К микрометрическим инструментам относятся. Микрометрические инструменты. Микрометр. Предельные погрешности инструмента, мкм

К микрометрическим инструментам относятся. Микрометрические инструменты. Микрометр. Предельные погрешности инструмента, мкм

1.4.1 Штангенциркули. Штангенинструменты являются распространенными в машиностроении видами измерительного инструмента. Их применяют для измерения наружных и внутренних диаметров, длин, толщин, глубин и т. д. Все штангенинструменты основаны на применении нониусов, по которым отсчитывают дробные доли делений основных шкал.

На рисунке 1.8 показано устройство штангенциркуля типа ШЦ – I.

1 - штанга, 2, 7 - губки, 3 - подвижная рамка, 4 - зажим,

5 – шкала нониуса, 6 - линейка глубиномера

Рисунок 1.8 Штангенциркуль ШЦ – I

Штангенциркули применяются трех типов: ШЦ - I, ШЦ – II (двухсторонние) и ШЦ – III (односторонний) по ГОСТ 166-89.

Штангенциркуль ШЦ - I применяется для измерения наружных, внутренних размеров и глубин с величиной отсчета по нониусу 0,1 мм. Штангенциркуль (рисунок 1.8 ) имеет штангу 1 , на которой нанесена шкала с миллиметровыми делениями. На одном конце этой штанги имеются неподвижные измерительные губки 2 и 7 а на другом конце линейка 6 для измерения глубин. По штанге перемещается подвижная рамка 3 с губками 2 и 7 .

Рамка в процессе измерения закрепляется на штанге зажимом 4 .

Нижние губки 7 служат для измерения наружных размеров, а верхние 2 - для внутренних размеров. На скошенной грани рамки 3 нанесена шкала 5 , называемая нониусом. Нониус предназначен для определения дробной величины цены деления штанги, т. е. для определения доли миллиметра. Шкала нониуса длиной 10 мм разделена на 10 равных частей; следовательно, каждое деление нониуса равно 19:10=1,9 мм , т. е. оно короче расстояния между каждыми двумя делениями, нанесенными на шкалу штанги, на 0,1 мм (2,0-1,9=0,1). При сомкнутых губках начальное деление нониуса совпадает с нулевым штрихом шкалы штангенциркуля, а последний-10-й штрих нониуса - с 19-м штрихом шкалы.


Перед измерением при сомкнутых губках нулевые штрихи нониуса и штанги должны совпадать. При отсутствии просвета между губками для наружных измерений или при небольшом просвете (до 0,012 мм )должны совпадать нулевые штрихи нониуса и штанги.

При измерении деталь берут в левую руку, которая должна находиться за губками и захватывать деталь недалеко от губок, правая рука должна поддерживать штангу, при этом большим пальцем этой руки перемещают рамку до соприкосновения с проверяемой поверхностью, не допуская перекоса губок и добиваясь нормального измерительного усилия.

Рамку закрепляют зажимом большим и указательным пальцами правой руки, поддерживая штангу остальными пальцами этой руки; левая рука при этом должна поддерживать нижнюю губку штанги. При чтении показаний штангенциркуль дер­жат прямо перед глазами. Целое число миллиметров отсчитывается по шкале штанги слева направо нулевым штрихом нониуса. Дробная величина (количество десятых долей миллиметра) определяется умножением величины отсчета (0,1 мм ) на порядковый номер штриха нониуса, не считая нулевого, совпадаю­щего со штрихом штанги. Примеры отсчета показаны на рисунке 1.9.

39+0,1*7= 39,7; 61+0,1*4=61,4

Рисунок 1.9 Примеры отсчета размеров по шкалам штанги и нониуса

Штангенциркули предназначены для измерения наружных и внутренних размеров, глубин отверстий и разметочных работ, изготовлены из высококачественных сталей.

Основные типы и параметры штангенциркулей по ГОСТ 166-89 приведены в таблицах 1.2 – 1.7

Таблица 1.2 – Измерительные характеристики и внешний вид ШЦ – I


Таблица 1.3 – Измерительные характеристики и внешний вид ШЦ – II

Таблица 1.4 – Измерительные характеристики и внешний вид ШЦ – III

Кроме механических штангенциркулей применяют цифровые со встроенным портом, показания не требуют расчета, имеется возможность переноса размеров на электронные носители и ПК.

Таблица 1.5 – Измерительные характеристики и внешний вид ШЦЦ – I


Таблица 1.6 – Измерительные характеристики и внешний вид ШЦЦ – II

Таблица 1.7 – Измерительные характеристики и внешний вид ШЦЦ – III

1.4.2 Штангенглубиномеры. Эти инструменты служат для измерения высот, глубины глухих отверстий, канавок, пазов, выступов. Изготавливаются по ГОСТ 162-90.

В таблицах 1.8 – 1.10 приведены измерительные характеристики и внешний вид штангенглубиномеров.

Таблица 1.8 – Измерительные характеристики и внешний вид Штангенциркуля с губками для измерения внутренних канавок


Таблица 1.9 – Измерительные характеристики и внешний вид Штангенглубиномера ШГ

Таблица 1.10 – Измерительные характеристики и внешний вид Штангенглубиномера цифрового ШГЦ

При измерении глубин отверстий штангенглубиномер устанавливают на опорную (измеряемую) поверхность детали основанием, прижимают основание левой рукой, а правой рукой опускают штангу до упора и зажимают винтом. Результаты измерений отсчитываются примерно таким же образом, как на обычном штангенциркуле, только нониусы отградуированы таким образом, что позволяют оценить десятые и сотые доли мм .

1.4.3 Штангенрейсмусы предназначены для измерения высот от плоских поверхностей и точной разметки, изготавливаются по ГОСТ 164-90 .

Штангенрейсмусы устроены следующим образом: они имеют основание с жестко закрепленной на нем штангой со шкалой, передвижную рамку с нониусом и стопорным винтом, устройство микрометрической подачи, которая состоит из движка, винта, гайки и стопорного винта, что позволяет устанавливать сменные ножки с острием для разметки (нанесения рисок).

Основные измерительные характеристики и внешний вид штангерейсмусов приведены в таблицах 1.11 – 1.12.


Таблица 1.11 – Измерительные характеристики и внешний вид штангенрейсмуса

Таблица 1.12 – Измерительные характеристики и внешний вид штангенрейсмуса цифрового

1.4.4 Микрометрические инструменты : микрометр, микрометрический глубиномер, микрометрический нутромер.

Микрометры служат для точного измерения наружных размеров деталей цилиндрической и плоской формы (тонких листов), толщин стенок труб – микрометры; глубин пазов, отверстий, выступов и впадин глубиномеры; внутренних размеров деталей – нутромеры.

Рассмотрим параметры, внешний вид и способы применения некоторых микрометров.

Микрометр гладкий МК ГОСТ 6507–90 имеет скобу 1 , пятку 2 , винт 3 , стопор 4 , стебель 5 , барабан 6 , трещотку 7 и установочные меры 8 (см. рисунок 1.10 ).


а – устройство; б – микрометрический винт; в – барабан; 1 – скоба; 2 – пятка;

3 – винт; 4 – стопор; 5 – стебель; 6 – барабан; 7 – трещотка; 8 – установочные меры

Рисунок 1.10 Микрометр гладкий

На рисунке 1.11 показан принцип отсчета размеров по показаниям микрометра.

Рисунок 1.11 Чтение показаний микрометра и примеры отсчета

МК предназначены для измерения наружных размеров изделий. Измерительные поверхности оснащены твердым сплавом

МКЦ предназначены для измерения наружных размеров изделий, требующих повышенной точности результата до 0,001 мм. Измерительные поверхности оснащены твердым сплавом. Встроенный порт (вывод результатов на ПК).

Таблица 1.13 – Измерительные характеристики и внешний вид микрометров гладких МК

Модель и диапазон измерений Цена деления, мм
МК 25 0,01
МК 50 0,01
МК 75 0,01
МК 100 0,01
МК 125 0,01
МК 150 0,01
МК 175 0,01
МК 200 0,01
МК 225 0,01
МК 250 0,01
МК 300 0,01
МК 400 0,01
МК 500 0,01
МК 600 0,01

Таблица 1.14 – Измерительные характеристики и внешний вид микрометров гладких цифровых МЦ


Таблица 1.15 – Измерительные характеристики и внешний вид микрометров типа МВМ

Предназначены для измерения среднего диаметра метрических, дюймовых и трубных резьб.

Таблица 1.16 – Измерительные характеристики и внешний вид микрометров зубомерных МЗ и МЗЦ

Модель и диапазон измерений Цена деления, мм Тип МЗ
МЗ 25 0,01
МЗ 50 0,01
МЗ 75 0,01
МЗ 100 0,01
МЗ 125 0,01
МЗ 150 0,01
МЗ 175 0,01
МЗ 200 0,01
МЗ 225 0,01
МЗ 250 0,01
МЗЦ 25 0,001 Тип МЗЦ
МЗЦ 50 0,001
МЗЦ 75 0,001
МЗЦ 100 0,001
МЗЦ 125 0,001
МЗЦ 150 0,001
МЗЦ 175 0,001
МЗЦ 200 0,001
МЗЦ 225 0,001
МЗЦ 250 0,001

Предназначены для измерения длины общей нормали зубчатых колес с модулем от 1 мм.


На рисунке 1.12 показано устройство и принцип действия микрометрического глубиномера. Прием пользования этим инструментом похож на прием применения штангенглубиномера. Сменные стрежни позволяют увеличить диапазон измеряемых глубин. Их длина – фиксированная величина и прибавляется к считанным показаниям.

а - устройство, б - примеры отсчета; 1 - стебель, 2 - основание, 3 - сменные стержни

Рисунок 1.12. Микрометрический глубиномер :

Микрометрические нутромеры по ГОСТ 10-88 предназначены для измерения внутренних размеров изделий.

Таблица 1.17 – Измерительные характеристики и внешний вид микрометрических нутромеров


На рисунке 1.13 показано устройство микрометрического нутромера.

а - устройство, б - удлинительный стержень, в - проверка кулевого положения; 1 - измерительные поверхности, 2, 6 - гайки, 3 - стопор,

4 - микрометрический винт, 5 - барабан

Рисунок 1.13 Микрометрический нутромер :

Шаг резьбы микрометрической винтовой пары (определяющий цену деления-перемещения измерительного стержня) равен 0,5 мм, сотые доли мм отсчитываются по показаниям конической части барабана.

Правила обращения с микрометрами:

· не разрешается измерять микрометром черные, плохо обработанные поверхности и особенно детали, покрытые наждачной или металлической пылью;

· запрещается измерять микрометрами нагретые детали и не следует продолжительное время держать его в руке, т.к. при этом показания будут неточными; измерения производить только при температуре 20 О С;

· в процессе измерения барабан трещотки вращать плавно и не слишком быстро;

· резкая подача и сильный зажим вина приводят к неточным показаниям и преждевременному износу винта; перед применением освободить стопор;

· не пользоваться микрометром как скобой во избежание износа измерительных поверхностей;

· при работе микрометр класть только на сухую чистую поверхность;

· по окончании работ микрометр тщательно протереть, стопор ослабить, измерительные поверхности немного развести;

· хранить микрометр в деревянном футляре; для длительного хранения микрометры промывают в чистом авиационном бензине, насухо протирают и смазывают техническим бескислотным вазелином; не допускается хранить их в сыром помещении и при резких перепадах температур.

Контрольные вопросы

1. Назначение и классификация штангенинструментов

2. Устройство штангенциркуля и методы измерения линейных величин этим инструментом

3. Назначение и классификация микрометров

4. Устройство микрометра и методы измерения величин этим инструментом

5. Правила обращения с микрометрами


Рычажные приборы

1.5.1 Классификация рычажных приборов . Рычажно-механические приборы обладают высокой точностью, универсальностью и предназначены в основном для относительных измерений, точностью от 0,01 до 0,0005 мм в зависимости от типа измерительной головки. Некоторые из них могут быть использованы также и для абсолютных измерений малых величин (размеров). Высокая точность показаний этих приборов получена в результате использования различных рычажно-механических систем, позволяющих в значительной степени увеличить передаточное число механизма.

Конструкции этих приборов весьма разнообразны и могут быть подразделены на 5 групп:

а) рычажного типа (рычажные индикаторы, миниметры);

б) с зубчатой передачей (индикаторы часового типа);

в) рычажно-зубчатые (рычажные скобы);

г) пружинные (микрокаторы);

д) комбинированные, построенные на принципе сочетания рычажно-зубчатого механизма с микрометрической парой.

В ремонтном производстве наиболее часто применяются Индикаторы часового типа и индикаторные нутромеры, а для высокоточных измерений - рычажные скобы, миниметры, пружинные микрометры (микрокаторы).

Индикаторы часового типа (с зубчатой передачей) предназначаются для относительного или сравнительного измерения и проверки отклонений от заданной формы размеров. Этими приборами определяют овальность, конусообразность, радиальное и торцовое биение, неплоскостность и непрямолинейность, отклонение от правильного взаимного расположения поверхностей и т. д. Они широко используются также в различных измерительных приспособлениях. Предел измерения индикатором составляет 0-10 мм, а цена деления 0,01 мм.

Индикаторы часового типа с ценой деления 0,01 мм (ГОСТ 577-68*) изготовляются двух типов: ИЧ - обыкновенный, с перемещением измерительного стержня параллельно шкале, с пределами измерения 0-5 и 0-10 мм; малогабаритные с пределами измерения 0-2 мм. ИТ - торцовые, с перемещением измерительного стержня перпендикулярно к шкале, с пределами измерения 0-2 мм.

1.5.2 Индикаторы часового типа . Предназначены для измерения линейных размеров абсолютным и относительным методами, определения величины отклонения от заданной геометрической формы и взаимного расположения поверхностей.

Конструкция индикатора часового (нормального) типа (рис. 1.14 ) основана на том, что в его механизме передаточное устройство выполнено в виде зубчатых колес и рейки, преобразующих поступательное перемещение измерительного стержня 8 с наконечником 9 во вращательное движение основной (большой) стрелки 5 . Передаточное число зубчатых колес выбрано таким, что при вертикальном перемещении измерительного стержня на 1 мм основная стрелка совершает полный оборот. Шкала индикатора (циферблат 3 ) имеет 100 делений. Таким образом, цена

деления составляет 0,01 мм. Погрешность часовых индикаторов в пределах одного


оборота равна тоже 0,01 мм. Перемещение стержня на целые миллиметры отмечается стрелкой на указателе числа оборотов 6 . Установка на ноль производится поворотом накатанного ободка 4 большого циферблата или головки 11 измерительного стержня (при неподвижном циферблате). При измерении индикатор устанавливают на индикаторные стойки различных конструкций.

1 – корпус; 2 – стопор; 3 – циферблат;

4 – ободок; 5 – стрелка; 6 – указатель;

7 –гильза; 8 – измерительный стержень;

9 – наконечник; 10 – рабочий конец

(шарик); 11 – головка

Рисунок 1.14 Устройство индикатора

Часового типа

Измерительные характеристики и внешний вид индикаторов часового типа представлены в таблицах 1.18 и 1.19 .

Таблица 1.18 – Индикаторы часового типа ИЧ ГОСТ 577-68

Таблица 1.19 – Индикаторы часового типа цифровые ИЧЦ ГОСТ 577-68

Индикаторы цифровые при измерениях не требует расчетов, имеют встроенный порт (вывод результатов на ПК).


1.5.3 Индикаторные нутромеры и глубиномеры. Предназначены для измерения высоты пазов, выступов и впадин, глубины отверстий, других внутренних размеров деталей относительными и абсолютными методами измерений. Общий принцип подобен индикатору часового типа – как рычажные приборы они преобразуют малую измеряемую величину в существенное перемещение стрелки по шкале индикатора.

В таблицах 1.20 и 1.21 представлены измерительные характеристики и внешний вид этих рычажных приборов.

Таблица 1.20 – Нутромер индикаторный ГОСТ 868–82

Таблица 1.21 – Глубиномер индикаторный ГИ ГОСТ 16209-82

Нутромеры вставляют в отверстия, слегка покачивая из стороны в сторону. Перед измерением нутромер предварительно настраивают на ожидаемую глубину по микрометру или блоку ПКМД. Основную стрелку устанавливают на 0. При касании шарика измерительного стержня к основанию измеряемой поверхности стрелка отклоняется вправо или влево. Тогда положительные отклонения отнимают от уста-новленного значения глубины, а отрицательные – наоборот, прибавляют. С показаниями глубиномеров поступают аналогично. В отличие от нутромеров глубиномеры имеют установочную плиту, которая прижимается к измеряемой


поверхности, относительно которой производится замер глубины. Нутромеры и глубиномеры поставляются в комплекте с дополнительными сменными стержнями заданных длин, чтобы увеличить диапазон измерений.

1.5.4 Прочие рычажные приборы. К ним можно отнести рычажно-зубчатые индикаторы, рычажные скобы и пружинные микрометры (микрокаторы).

1) Индикаторы рычажно-зубчатые ИРБ предназначены для абсолютных и относительных измерений линейных размеров, контроля отклонений от заданной геометрической формы и взаимного расположения поверхностей.

Шкала индикатора типа ИРБ размещена параллельно оси измерительного рычага в среднем положении и перпендикулярно к плоскости его поворота.

Выпускаются с ценой деления 0,01 и 0,001 мм.

Рисунок 1.15 Индикатор рычажно-зубчатый ИРБ

2) Скоба рычажная СР предназначены для измерения линейных размеров прецизионных деталей, как методом непосредственной оценки, так и методом сравнения с мерой, в точном приборостроении, машиностроении и других отраслях промышленности. Шкала отсчетного устройства может быть расположена от вертикального до горизонтального положения.

Скобы рычажные выпускаются с ценой деления 0.001 мм.

Таблица 1.22 – Скобы рычажные СР (ТУ 2-034-227-87)

3) Измерительные пружинные головки МИКРОКАТОРЫ типа ИГП – это механические прецизионные индикаторы, предназначенные для высокоточных измерений линейных размеров и контроля геометрической формы. Могут применяться как в специальных стойках, так и в различного вида измерительных устройствах и приспособлениях с присоединительным диаметром 28 мм. В конструкции прибора используется измерительный механизм в виде скрученной в средней части ленточной пружины, при растягивании поворачивающейся на

определенный угол. Измеряемая длина, которую показывает стрелка, укрепленная в средней части пружины, пропорциональна углу поворота пружины. Точность, линейность, повторяемость и чувствительность - это основные отличительные признаки микрокаторов. Настройку микрокатора на контролируемый размер осуществляют по концевым мерам, располагаемым между измерительным наконечником и плоскостью стола стойки.

Таблица 1.23 – Микрокаторы

4) Измерительные пружинные малогабаритные головки Микаторы типа ИПМ – это механические прецизионные индикаторы предназначены для измерения линейных размеров изделий и их отклонений от заданной геометрической формы, а также для встраивания в различные измерительные приборы. В конструкции прибора используется измерительный механизм в виде скрученной в средней части ленточной пружины, при растягивании поворачивающейся на определенный угол. Точность, линейность, повторяемость и чувствительность - это основные отличительные признаки микаторов. Присоединительный диаметр 8мм, вылет измерительного стержня 32мм.

Таблица 1.24 – Микаторы ГОСТ 14712-79

Контрольные вопросы

1. Назначение и классификация рычажных инструментов

2. Устройство и принцип действия индикатора часового типа

3. Другие виды микрометрических инструментов рычажного типа

Микрометр - прибор для измерения линейных размеров контактным способом. Изготовляют следующие типы микрометров:

МК - микрометры гладкие для измерения наружных размеров;

МЛ - микрометры листовые с циферблатом для измерения толщины листов и лент;

МТ - микрометры трубные для измерения толщины стенок труб;

М3 - микрометры зубомерные для измерения зубчатых колес.

Микрометры типа МК выпускают с пределами: 0-5; 0-10; 0-15; 0-25; 25-50 50-75; 75-100; 100-125; 125-150; 150-175; 175-200; 200-225; 225-250 250-275; 275-300; 300-400; 400-500 500 - 600 мм.

Микрометры с верхним пределом измерений 50 мм и более снабжают установочными мерами (цилиндрические стержни, имеющие точную форму).

Микрометр (рис. 378, а) имеет скобу 7 с пяткой 2 на одном конце, втулку-стебель 5 на другом, внутрь которой ввернут микрометрический винт 3. Торцы пятки и микрометрического винта являются измерительными поверхностями. На наружной поверхности стебля проведена продольная линия, ниже которой нанесены миллиметровые деления, а выше ее - полумиллиметровые деления. Винт 3 жестко связан с барабаном 6, на конической части барабана нанесена шкала (нониус) с 50 делениями.

На головке микрометрического винта имеется устройство (трещотка) 7, обеспечивающее постоянное измерительное усилие. Трещотка соединена с винтом так, что при увеличении измерительного усилия свыше 900 гс она не вращает винт, а проворачивается. Для фиксирования полученного размера детали служит стопор 4. Шаг микрометрического винта 3 равен 0,5 мм (рис. 378, б). Так как на скосе барабан 6 по окружности разделен на 50 равных частей (рис. 378, в), то при повороте на одно деление барабана микрометрический винт 3, соединенный с барабаном 6, перемещается вдоль оси на 1/50 шага, т. е. 0,5 мм: 50 = 0,01 мм.

Перед измерением проверяют нулевое положение микрометра. При проверке микрометра с пределами измерения 0 - 25 мм протирают замшей измерительные плоскости пятки и микрометрического винта, затем медленно сводят их до соприкосновения. Для этого медленно вращают трещотку 7, пока она не начнет проворачиваться, издавая характерный треск. Медленное вращение трещотки необходимо потому, что скорость вращения винта влияет на величину измерительного усилия.

При проверке микрометров с пределами измерения 25 - 50, 50 - 75 мм и т. д. между измерительными плоскостями микрометрического винта и пятки помещают либо установочную меру 8, либо мерительную плитку, соответствующую нижнему пределу измерения, т. е. 25, 50, 75 и т. д. Измерительные плоскости сближаются так же, как и у микрометров с пределом измерения 0 - 25 мм.

Если при проверке окажется, что нулевое деление барабана 6 не совпадет с продольным штрихом на стебле 5, еще раз выполняют установку на нуль в таком порядке: закрепляют микровинт стопором; разъединяют барабан с микровинтом; устанавливают барабан и закрепляют его; проверяют нулевое положение.

Перекос измерительных поверхностей микрометрического винта при зажатии стопором не должен превышать у микрометров с пределами измерения до 100 мм - 1 мкм, а для микрометров с пределами измерения более 100 мм - 2 мкм.

Перед измерением проверяемую деталь закрепляют в тисках или в приспособлении, протирают измерительные поверхности и устанавливают микрометр на размер несколько больше проверяемого, затем микрометр (рис. 379, а, в) берут левой рукой за скобу 7, а измеряемую деталь 3 помещают между пяткой 2 и торцом микрометрического винта 4. Плавно вращая трещотку, прижимают торцом микрометрического винта 4 деталь 3 к пятке 2 до тех пор, пока трещотка 5 не начнет провертываться и пощелкивать.

Установка микрометра на нуль показана на рис. 379, 6.

При измерении диаметра цилиндрической детали линия измерения должна быть перпендикулярна образующей и проходить через центр (рис. 379, в).

При чтении показаний микрометра целые миллиметры отсчитывают по краю скоса барабана по нижней шкале, полу миллиметры - по числу делений верхней шкалы стебля. Сотые доли миллиметра определяют на конической части барабана по порядковому номеру (не считая нулевого) штриха барабана, совпадающего с продольным штрихом стебля.

При чтении показаний микрометр держат прямо перед глазами (рис. 380, а). Примеры отсчета показаны на рис. 380, 6.

Микрометрический глубиномер с точностью измерения 0,01 мм (рис. 381, а) применяют для измерения глубины пазов, отверстий и высоты уступов до 100 мм. Глубиномеры изготовляют со сменными измерительными стержнями для измерений в пределах 0 - 25; 25 - 50; 50 - 75 и 75 - 100 мм. Изменение пределов измерения достигается присоединением сменных стержней. Шаг резьбы микрометрического винта 7 (стебель) - 0,5 мм. Изменение пределов измерений достигается присоединением сменных измерительных стержней 3.

Перед измерением проверяют нулевое положение глубиномера. При измерении левой рукой прижимают основание 2 глубиномера к верхней поверхности детали, а правой при помощи трещотки в конце хода доводят измерительный стержень до соприкосновения с другой поверхностью детали. Затем стопорят микрометрический винт и читают размер.

При чтении показаний надо иметь в виду, что при ввинчивании микрометрического винта глубиномера показания не уменьшаются, как у микрометра, а увеличиваются. Поэтому цифры на шкале стебля и барабана указаны в обратном порядке: на стебле цифры увеличиваются справа налево, а на барабане - по часовой стрелке (рис. 381, б).

Микрометрический нутромер (штихмасс) с ценой деления 0,01 мм (рис. 382, а) предназначен для измерения внутренних размеров от 50 до 10 000 мм. Микрометрические нутромеры изготовляют с пределами измерений: 50-75; 75-175; 75-600; 150 - 1250; 800-2500; 1250-4000; 2500-6000; 4000-10 000 мм. Нутромеры с пределами измерений 1250 - 4000 мм и более поставляют с двумя головками: микрометрической и микрометрической с индикатором.

Шаг резьбы микрометрической винтовой пары нутромера равен 0,5 мм. Микрометрический нутромер имеет стебель 2 (рис. 382, а), в отверстие которого вставлен микрометрический винт 4. Концы стебля и микрометрический винт имеют сферические измерительные поверхности 7.

На винт насажен барабан 5 с установочной гайкой 6. В установленном положении микровинт закрепляют стопором 3.

Для измерения отверстий размером более 63 мм используют удлинительные стержни (рис. 382, б) с размерами: 25; 50; 100; 150; 200 и 600 мм. Без удлинителей можно измерять размеры от 50 до 63 мм. Перед навинчиванием удлинителя со стебля свинчивают гайку 6, после присоединения удлинителя ее навинчивают на резьбовой конец последнего стержня.

Перед измерением микрометрическую головку (рис. 382,д) устанавливают по установочной мере (скобе) на исходный размер, проверяют нулевое положение, затем выбирают наименьшее количество соответствующих удлинителей.

Измерение нутромером отверстий производят по двум взаимно перпендикулярным диаметрам. Левой рукой прижимают измерительный наконечник к одной поверхности, а правой рукой вращают барабан до легкого соприкосновения с другой поверхностью (рис. 383,а,б). Отыскав наибольший размер, стопорят микровинт и читают размер.

Правильное положение микрометрического нутромера находят покачиванием головки нутромера при легком контактировании измерительных поверхностей с деталью.

Для отсчета показаний на стебле нутромера имеется шкала длиной 13 мм с полу миллиметровыми и миллиметровыми делениями. Вторая шкала нанесена на конической части барабана, она имеет 50 делений по окружности. По этой шкале и отсчитывают сотые доли миллиметра.

Показания микрометрического нутромера читают так: к предельному размеру микрометрической головки (75 мм) прибавляют показания на стебле (в данном случае 3 мм), а затем показания на скосе барабана (0,21 мм). Следовательно, показание будет 75 мм + 3 мм + 0,21 мм = 78,21 мм (рис. 383, я).

При чтении показаний с удлинителями к показанию микрометрической головки прибавляют длину удлинителей, например: к микрометрической головке присоединены удлинители 200 и 100 мм. Показание (рис. 383,г) будет:

75 мм + 200 мм + 100 мм + 6 мм + 0,16 мм = 381,16 мм.

– профессиональный измерительный инструмент, который предназначается для измерения изделий малого размера. Микрометр - высокоточный прибор, преобразовательным механизмом в котором служит микропара – так называемые винт и гайка, которые и помогают достичь такой высокой точности. Как и штангенциркули, микрометры различают по видам:

- В зависимости от конструктивных особенностей : ручные и настольные,

- В зависимости от назначения : гладкие, листовые, рычажные, проволочные, трубные, призматические, канавочные, зубомерные, резьбомерные , для мягких материалов , специальные и универсальные.

Наиболее распространенным является гладкий микрометр, который конструктивно состоит из скобы, которая оборудована «пяткой», подвижного винта с точной резьбой, трещотки, а также втулки-стебля, на которую нанесены две шкалы. На верхней шкале размер указывается в миллиметрах, на нижней – в половинах миллиметра. На конической части барабана нанесены деления для отсчёта сотых долей миллиметра (рисунок 1).

Рисунок 1.

1 – неподвижный упор («пятка»); 2 – измеряемый предмет; 3 – подвижный шпиндель (микрометрический винт); 4 – кольцевая гайка; 5 – полый стебель; 6 – винт трещотки; 7 – барабан (гильза); 8 – скоба.

Измеряемый предмет помещается между винтом и пяткой, после чего фиксируется в неподвижном состоянии, путем вращения винта. Именно благодаря трещетке, создается осевое усилие, которое и удерживает предмет между пяткой и шпинделем. Показания снимаются сперва по шкале стебля, а после по шкале барабана, затем полученные значения измерений складывают и получают результат.

Поскольку изготовление винта с точным шагом на большой длине вызывает некоторые сложности, то, в настоящее время, микрометры выпускают в нескольких типоразмерах. Существуют микрометры, которые измеряют длины от 0 до 25 мм, другие микрометры могут точно измерять длины от 25 до 50 мм, третьи - от 50 до 75 мм, и так до 500-600 мм. Все микрометры, которые рассчитаны на измерение изделий от 25 мм и более, снабжаются установочными концевыми мерами, которые позволяют выставить прибор «на ноль». Для более быстрых измерений, изготавливаются инструменты с электронной «цифровой» индикацией, конечное значение измерений в которых, выводится на отдельный электронный дисплей (например, модифицированный микрометр МК - ) (Рисунок 2).

Рисунок 2.

Продлить срок эксплуатации микрометра возможно только с соблюдением правил использования и хранения прибора. Нельзя измерять грубо обработанные детали и поверхности, покрытые окалиной или металлической пылью. Точность показаний измерений зависит от температуры. При работе с нагретыми предметами показания будут неточными. Вращать барабан трещотки следует медленно и очень аккуратно, для предотвращения преждевременного износа винта. Хранить микрометр необходимо в деревянном футляре, предварительно смазав прибор техническим маслом и ослабив стопоры.

Точность измерений – это залог успеха при производстве мелких деталей или небольших комплектующих, а также при изготовлении «пилотных» образцов и штучном, единичном производстве.

Микрометры должны производиться в соответствии с ГОСТ 6507-90, по которому микрометры делятся на следующие типы:

1) Микрометр гладкий МК - данный микрометр используется для измерения наружных размеров изделий (Рисунок 3);

Рисунок 3.

2) Микрометр листовой МЛ - листовой с циферблатом микрометр используется для измерения толщины металлических листов и лент (Рисунок 4);

Рисунок 4.

3) Микрометр трубный МТ - используется в качестве измерительного прибора для определения толщины стенки труб (Рисунок 5).

Рисунок 5.

4) Микрометр зубомерный МЗ – данный микрометр используется для измерения длины общей нормали зубчатых колес с модулем от 1 мм (Рисунок 6);МРИ . Также бывают призматические микрометры (серия МТИ, МПИ, МСИ), канавочные, микрометры резьбомерные и прочие.

Измерительные линейки, штангенинструмент и микрометрические инструменты

Измерительные линейки

Измерительные линейки (рис. 1.7) относятся к штриховым мерам и предназначены для измерения размеров изделий 14... 18 квалитетов точности прямым методом.


Они предназначены для измерений высот, длин, диаметров, глубин в различных отраслях промышленности, в том числе и в машиностроении. Их основное преимущество - простота конструкции, низкая стоимость, надежность и простота в измерении. Измерение производят прикладыванием линейки к измеряемому объекту, чаще всего совмещая нулевой штрих линейки с краем детали. Отсчет по шкале на другом краю детали дает искомый результат измерения. Но это не обязательно. Так, например, при измерении диаметра отверстия снимаются два показания: с одной стороны отверстия и с другой. Вычитая из большего значения меньшее, получаем размер диаметра.


Конструкции линеек однотипны. Они представляют собой металлическую полосу шириной 20...40 мм и толщиной 0,5... 1,0 мм, на широкой поверхности которой нанесены деления. Линейки изготавливают с одной или двумя шкалами, с верхними пределами измерений 150, 300, 500 и 1 000 мм и ценой деления 0,5 или 1 мм. Линейки с ценой деления 1 мм могут иметь на длине 50 мм от начала шкалы полумиллиметровые деления.



Рис. 1.7.

Допускаемые отклонения действительной общей длины шкалы линеек от номинального значения находятся в пределах +(0,10...0,20) мм в зависимости от общей длины шкалы, а отдельных подразделений- не более ±(0,05...0,10) мм.


Поверку (калибровку) линеек, т. е. определение погрешности нанесения штрихов, производят по образцовым измерительным линейкам, которые называются штриховыми мерами. Погрешность такого сравнения не превышает 0,01 мм.

Штангенинструмент

Предназначен для абсолютных измерений линейных размеров наружных и внутренних поверхностей, а также для воспроизведения размеров при разметке деталей.


К нему относятся штангенциркули (рис. 1.8), штангенглубино- меры и штангенрейсмасы.


Основными частями штангенциркуля являются штанга-линейка с делениями шкалы 1 мм и перемещающаяся по линейке шкала-нониус 5. По штанге-линейке отсчитывают целое число миллиметров, а по нониусу- десятые и сотые доли миллиметра.


По основной линейке 1 с неподвижными губками 2 перемещается рамка 3 с подвижными измерительными губками. Для плавного перемещения рамки по штанге-линейке предусмотрено микрометрическое устройство 7, состоящее из хомутика, зажима и гайки микрометрической подачи. На подвижной рамке установлен стопорный винт 4. Для измерения глубины отверстий пазов и других внутренних элементов деталей используется линейка глубиномера 6.


Для отсчета с помощью нониуса сначала определяют по основной шкале целое число миллиметров перед нулевым делением нониуса. Затем добавляют к нему число долей по нониусу в соответствии с тем, какой штрих шкалы нониуса ближе к штриху основной шкалы (рис. 1.8, г).


Основные типы нониусов (I-IV) представлены на рис. 1.9.


Основными характеристиками нониуса являются величина отсчета по нониусу (цена деления нониуса) а и модуль нониуса у, которые определяются по следующим формулам:



у =(l + i)/(ni),


где i - цена деления основной шкалы, мм; n - число делений нониуса; l - длина шкалы нониуса мм.



Рис. 1.8. :


а - типа ШЦ-1; б - типа ШЦ-П; в - типа ШЦ-Ш; г - отсчет по нониусу; 7 - штанга-линейка; 2 - измерительные губки; 3 - рамка; 4 - винт зажима рамки; 5 - нониус; 6 - линейка глубиномера; 7 - рамка микрометрической подачи

Наибольшее распространение получили нониусы с точностью отсчета 0,1; 0,05; 0,02 мм. Основные метрологические характеристики штангенинструментов, применяемых в машиностроении, представлены в табл. 1.2.


ГОСТ 166-89 предусматривает изготовление и использование трех типов штангенциркулей: ШЦ-1 с ценой деления 0,1 мм, ШЦ-П с ценой деления 0,05 мм и 0,1 мм, ШЦ-Ш с ценой деления 0,05 и 0,1 мм. Кроме того, на заводах применяют ранее изготовленные штангенциркули с ценой деления нониуса 0,02 мм, а также индикаторные штангенциркули с ценой деления индикатора 0,1; 0,05; 0,02 мм.


В штангу индикаторного штангенциркуля (рис. 1.10) вмонтирована зубчатая рейка 2, по которой перемещается зубчатое колесо 3 индикатора, закрепленного на рамке 1. Перемещение зубчатого колеса передается на стрелку индикатора, показывающую единицы, десятые и сотые доли миллиметра.


Для линейных измерений в последнее время применяют также штангенинструменты с электронным цифровым отсчетом (рис. 1.11). В этих приборах вдоль штанги также располагается многозначная мера, по которой отсчитывается величина перемещения подвижной рамки. В качестве многозначной меры используются фотоэлектрические или емкостные преобразователи. Большинство штангенинструментов с электронным отсчетным устройством имеют возможность представления результата измерения непосредственно на шкалу прибора либо на подключаемый к нему микропроцессор. Цена деления таких приборов составляет 0,01 мм.


(ГОСТ 162 - 90) (рис. 1.12) принципиально не отличаются от штангенциркулей и применяются для измерения глубины отверстий и пазов. Рабочими поверхностями штангенглубииомеров являются торцовая поверхность штанги-линейки 1 и база для измерений - нижняя поверхность основания 4. Для удобства отсчета результатов измерений, повышения точности и производительности контрольных операций в некоторых типах штангенглубииомеров вместо нониусной шкалы предусматривается установка индикатора часового типа с ценой деления 0,05 и 0,01 мм.


(ГОСТ 164-90) (рис. 1.13) являются основными измерительными инструментами для разметки деталей и определения их высоты. Они могут иметь дополнительный присоединительный узел для установки измерительных головок параллельно или перпендикулярно плоскости основания.





Рис. 1.9.

Таблица 1.2. Основные метрологические характеристики штангенинструментов

Измерительное средство

Цена деления шкалы, мм

Диапазон показаний шкалы, мм

Пределы измерений инструмента, мм

Предельные погрешности инструмента, мкм

Условное

обозначение

инструмента

Штангенциркули

ШЦ-1-125-0,1

(ГОСТ 166-89) типов:

ГОСТ 166-89

ШЦ-I, ШЦТ-1

±(150...170)

ШЦ-И, ШЦ-Ш

ШЦ-Н-250-0,05

ГОСТ 166-89

ШГ-160

(ГОСТ 162-89) типа ШГ

ГОСТ 162 - 90





Рис. 1.10. : 1 - рамка; 2 - зубчатая рейка; 3 - зубчатое колесо

Конструкция и принцип действия штангенрейсмаса принципиально не отличаются от конструкции и принципа действия штангенциркуля. На заводах применяют штангенрейсмасы с индикаторным и цифровым отсчетом показаний. В первом случае вместо нониус - ной шкалы на подвижной рамке устанавливают индикатор часового типа с ценой деления 0,05 или 0,01 мм, а во втором - зубчатое колесо ротационного фотоэлектрического счетчика импульсов, которое находится в зацеплении с зубчатой рейкой, нарезанной на штанге прибора. За один оборот зубчатого колеса счетчик дает 1 000 импульсов, которые передаются цифровому показывающему или записывающему устройству. Погрешность измерения в этом случае может не превышать 10... 15 мкм.


Для измерения и контроля толщины зубьев зубчатых колес по постоянной хорде применяют штангензубомеры с нониусом по




Рис. 1.11.



Рис. 1.12. :


1 - штанга-линейка; 2 - рамка микрометрической подачи; 3 - нониус; 4 - основание




Рис. 1.13.


1 - штанга-линейка; 2 - рамка; 3 основание; 4 - державка; 5 - нониус

ТУ 2-034-773 - 84 (рис. 1.14) ШЗ-18 и ШЗ-36 с ценой деления 0,05 мм. Этими приборами измеряют зубчатые колеса с модулем с 1 по 18 и с 5 по 36 соответственно без ограничения диаметра делительной окружности, со степенями точности колес 11, 12.


Сама толщина зуба стандартом не нормируется, однако по этой величине путем пересчета можно определить величину смещения исходного контура зубчатой рейки, которая нормируется ГОСТ. При смещении исходного контура зубчатой рейки изменяется толщина зуба по постоянной хорде.


При угле зацепления 20° расстояние hc от постоянной хорды до окружности выступов hc = 0,7476т, а теоретическая толщина зуба по постоянной хорде Sc = 1,387т. На практике значения hc и Sc находят по заранее составленным таблицам.


Штангензубомер имеет две взаимно перпендикулярные штанги 1 и 4, по которым перемещаются две нониусные рамки 2 и 5.


Рамка 2 выполнена с упором 3, а рамка 5 - с губкой 6. При измерении толщины зуба упор 3 устанавливают по нониусу 2 на расчетное значение hc и затем накладывают прибор на проверяемый зуб. Губки 6 и 7 сдвигают и по нониусу 5 измеряют толщину зуба Sc.

Микрометрические инструменты

Предназначены для абсолютных измерений наружных и внутренних размеров, высот уступов, глубин отверстий и пазов и т.д. К ним относятся гладкие микрометры (рис. 1.15), микрометры со вставками, микрометрические глубиномеры, микрометрические нутромеры.


Принцип действия этих инструментов основан на использовании винтовой пары (винт-гайка) для преобразования вращательного движения микрометрического винта в поступательное. Основными частями микрометрических инструментов являются: корпус 1, стебель 3, внутри которого с одной стороны имеется микрометрическая резьба с шагом 0,5 мм, а с другой - гладкое цилиндрическое отверстие, обеспечивающее точное направление перемещения винта.




Рис. 1.14. :


1 и 4 - штанга; 2 и 5 - нониусная рамка; 3 - упор; 6 и 7 - губки

На винт 4 установлен барабан 5, соединенный с трещоткой 7, обеспечивающей постоянное усилие измерения (для микрометрических нутромеров трещотка не устанавливается). Стопор служит для закрепления винта в нужном положении.


Отсчетное устройство микрометрических инструментов (рис. 1.15, в) состоит из двух шкал: продольной 1 и круговой 2. По продольной шкале отсчитывают целые миллиметры и 0,5 мм, по круговой шкале - десятые и сотые миллиметра.


Основные метрологические характеристики микрометрических инструментов представлены в табл. 1.3.


Гладкие микрометры типа МК (ГОСТ 6507-90) (см. рис. 1.15) выпускают с различными пределами измерений - от 0 до 300 мм с диапазоном показаний шкалы 25 мм, а также 300...400, 400...500 и 500...600 мм.



Рис. 1.15. :


а - кинематическая схема; 6 - принципиальная схема; 7 - корпус; 3 - пятка неподвижная; 3 - стебель; 4 - винт микрометрический; 5 - барабан; 6 - гайка микрометрической пары; 7 - устройство стабилизации усилия измерений (трещотка); 8 - ось продольной шкалы; в - отсчетное устройство: 7 - продольная шкала; 3 - круговая шкала

Предельная погрешность микрометров зависит от верхних пределов измерения и может составлять от ±3 мкм для микрометров МК-25 до ± 50 мкм - для микрометров МК-500. Выпускают микрометры с цифровым отсчетом всего результата измерения. Отсчетное устройство в таких микрометрах действует по механическому принципу.


(ГОСТ 7470 - 92) (рис. 1.16) предназначен для абсолютных измерений глубин отверстий, высот выступов и т.д. Он имеет стебель 3, закрепленный на траверсе 4 с помощью гайки фиксации 6. Одной измерительной поверхностью является нижняя плоскость траверсы 4, другой - плоскость микрометрического винта, соединенного с подвижной пяткой 5. Микровинт вращается трещоткой 1, соединенной с барабаном 2. В комплект микрометрического глубиномера входят установочные меры с плоскими измерительными торцами.


Таблица 2.3. Основные метрологические характеристики микрометрических инструментов

Измерительное средство

Цена деления шкалы,

Диапазон показаний шкалы,

Пределы измерений инструмента, мм

Предельная

Погрешность инструмента,

Измерительное усилие,

Микрометры гладкие типа МК для измерения наружных размеров

(ГОСТ 6507 - 90)

Нутромер микро метрический (тип НМ)

(ГОСТ 10-88)

Глубиномер микрометрический

(ГОСТ 7470-92)

(ГОСТ 10-88) (рис. 1.17) предназначен для абсолютных измерений внутренних размеров. При измерении измерительные наконечники приводят в соприкосновение со стенками проверяемого отверстия. Микрометрические нутромеры не имеют трещоток, поэтому плотность соприкосновения определяется на ощупь. Установка нутромера на нуль выполняется либо по установочному кольцу, либо по блоку концевых мер с боковиками, устанавливаемых в струбцину.


Микрометрические нутромеры типа НМ выпускают с пределами измерений 50...75, 75... 175, 75...600, 150... 1 250, 800...2 500, 1 250...4000, 2500...6000 и 4000... 10000 мм. При необходимости увеличения пределов измерений используют удлинители.


Для выбора удлинителей от проверяемого размера отнимают нижний предел измерений микрометрической головки с наконечником. Затем выбирают удлинители по размерам, обеспечивающим их наименьшее количество (от наибольшего к наименьшему) . Сумма нижнего предела измерений микрометрической головки с наконечником и удлинителями должна быть меньше требуемого размера, но не более чем на разность между пределами измерения микрометрической головки.


Микрометрические инструменты применяют также для специфических видов контроля параметров сложных деталей. Так, микрометр со вставками (резьбовой микрометр) (рис. 1.18, а) применяют для измерения среднего диаметра резьбы, микрометрический нормалемер (рис. 1.19) - для измерения колебания длины общей нормали зубчатых колес.


Резьбовой микрометр имеет в неподвижной пятке 1 и микрометрическом винте 4 отверстия, в которые устанавливают сменные призматические 2 и конические 3 вставки (рис. 1.18, б).




Рис. 1.16. :


1 - трещотка; S - барабан; 3 - стебель; 4- траверса; 5 - подвижная пятка; 6 - гайка фиксации



Рис. 1.17. :


1 - неподвижный наконечник; 2 - удлинитель (головка индикаторная); 3 - микрометрическая головка

Для измерения метрических и трапецеидальных резьб предназначено по восемь пар вставок, а для измерения дюймовых резьб - шесть пар вставок. Для компенсации изменения длины вставок барабан изготавливают раздвижным: он состоит из двух частей 5 и 7, стягиваемых гайкой 6. При измерении резьбы поверхности вставок приводятся в соприкосновение с профилем резьбы (рис. 1.18, в). Погрешность измерения резьб (до Мб) составляет 0,04...0,05 мм. Для крупных шагов наибольшие погрешности достигают 0,15 мм, а при измерении с установкой по резьбовому калибру - 0,10 мм.




Рис. 1.18. :


а - схема; б - сменные вставки; в - принцип измерений; 7 - неподвижная пятка; 2 - призматическая вставка; 3 - коническая вставка; 4 - микрометрический винт; 5 и 7 - раздвижные части барабана; 6 - гайка





Рис. 1.19. Микрометрический нормалемер


Микрометрический нормалемер в неподвижной пятке и микрометрическом винте имеет две охватывающие параллельные тарельчатые губки, которые при измерении входят во впадины зубчатого колеса.

Микрометр – это точный измерительный инструмент, предназначенный для работы с деталями мелких размеров. Он обладает высокой точностью, поэтому с его помощью можно получить линейные параметры измеряемого объекта с допуском от 2 мкм. Благодаря столь малой погрешности инструмент и получил свое название. Он намного более точный, чем штангенциркуль, а тем более чем обычная линейка.

Как устроен микрометр

Существует несколько популярных конструкции микрометров, которые являются усовершенствованной базовой моделью этого инструмента подогнанной под определенные узкие цели.

В простом исполнении микрометр состоит из следующих элементов:

В основе конструкции лежит металлическая скоба, параметры которой ограничивают возможность изменения. На одном ее конце имеется металлическая пятка, а на втором прикрепляется механизм в виде винта. Он отрегулирован таким способом, что расстояние между его кончиком и пяткой скобы отображается на цифровой шкале инструмента. Вкрутив винт до момента прижатия измеряемой заготовки, можно получить точное отображение ее ширины. После этого остается только посмотреть на шкалу. Данный прибор является контактным. Он не применяется для измерения мягких материалов, которые при прикасании начинают сжиматься.

Чтобы полученный результат не сбивался, пока не будет записан, на микрометре предусматривается фиксатор. При его нажатии исключается вероятность случайного выкручивания винтов и сдвига указателя на цифровой шкале даже на несколько долей миллиметра.

Сфера использования

Данное оборудование является довольно распространенным в различных отраслях. Его профессионально используют:

  • Токари.
  • Литейщики.
  • Фрезеровщики.
  • Лабораторные сотрудники.
  • Моделисты.
  • Ювелиры.

Это оборудование позволяет получить точные линейные данные, но оно не столь универсально, как тот же самый штангенциркуль. Для выполнения определенных задач данный инструмент является незаменимым, поскольку именно он позволяет добиться практически лабораторной точности, что не сможет ни один другой ручной прибор измерения.

Виды микрометров

Сфера использования данного оборудования довольно обширна, поэтому его конструкция была адаптирована под определенные цели. Это позволяет обеспечить максимально удобные и точные измерения. Существуют более 20 конструктивно отличающихся между собой микрометров, из которых многие являются очень редкими и практически не применяются в быту.

Среди популярных микрометров можно отметить:
  • Гладкий.
  • Листовой.
  • Для горячего металлопроката.
  • Для глубокого измерения.
  • Трубный.
  • Проволочный.
  • С малыми губками.
  • Универсальный.
  • Канавочный.
  • Цифровой.
Гладкий микрометр

Самый распространенный в использовании. Он применяется для снятия наружных показателей деталей и заготовок. Именно такой инструмент чаще всего можно встретить в продаже. Подобные модели можно использовать практически в любых целях, кроме тех случаев, когда нужно измерить внутренние показатели заготовок, поскольку для такого устройство не предназначено.

Листовые микрометры

Имеют на пятке и на самом винте круглые тарелки, что увеличивает площадь контакта с измеряемой заготовкой. Это позволяет провести ее предварительную деформацию, чтобы выровнять и измерять точную толщину. Таким инструментом обычно измеряют параметры листового проката, металлических лент и кованых в кузнице заготовок.

Хотя с теоретической точки зрения снять параметры можно и с помощью обычного гладкого микрометра, но на самом деле это не так. Зачастую прокат имеет неровности, поэтому можно установить пятку и винт на вмятину или наоборот на утолщение. Применение широких тарелок позволяет увеличить площадь и избежать контакта с подобными областями, которые могут приводить к получению неточных данных.

Микрометр для горячего металлопроката

Применяется для работы с раскаленными заготовками. C его помощью можно быстро и эффективно измерить толщину железных элементов при их производстве, не ожидая пока они остынут. Именно с помощью этого инструмента удается контролировать момент, когда необходимо остановить прокат металла и забрать готовую заготовку нужных параметров.

Микрометры для глубокого измерения

Имеют очень вытянутую скобу, которая позволяет накинуть инструмент на заготовку и проверить толщину в удаленном от края месте. Это особенно важно если измеряемая деталь является неравномерной по периметру. С помощью таких устройств можно узнать точную толщину детали, в которой проведено несквозное сверление отверстия или зенкование.

Микрометры трубного типа

Предназначены исключения для измерения толщины стенок трубок. Они имеют особенную конструкцию, поэтому их невозможно спутать с устройствами других типов. Визуально определить трубные микрометры несложно. Они имеют обрезанную скобу, на конце которой пятка заменяет срезанную скобу. Такая пятка вставляется внутрь трубки, которая измеряется, после чего винт поджимается и можно получить точные данные о диаметре стенки.

Данное оборудование позволяет снимать параметры даже с очень тонких труб, главное чтобы в них могла войти пятка. Именно это и отличает трубные инструменты от гладких типов. С помощью обычного микрометра можно снимать данные только с довольно толстых труб, внутренний диаметр которых позволяет вставлять в них часть скобы вместе с выходящей в сторону пяткой.

Проволочный микрометр

Является одной из самой компактной разновидностью базовой модели. Он не имеет столь ярко выраженной скобы как обычные инструменты. Внешне его можно принять за обычный металлический прут. Подобный инструмент используется для замера диаметра металлической проволоки и прутиков. Он имеет малый диапазон хода, но этого более чем достаточно для тех измерений, для которых он предназначен. Отсутствие объемной скобы позволяет носить инструмент в компактном чемоданчике с и . Подобные микрометры занимают места не больше, чем .

Микрометр с малыми губками

Предназначен для снятия параметров на поверхности металла после осуществления в нем проточки или сверления. Главная особенность таких инструментов заключается в том, что пятка и винт сделаны очень тонкими. Благодаря этому их можно вставлять в тонкие отверстия. По конструктивным особенностям подобные модели ничем не отличаются от обычных, кроме утонченных элементов.

Универсальные микрометры

Имеют съемные наконечники. Именно такие устройства выбирают в том случае, если нужно проводить измерение, различных по свойствам, заготовок и деталей. Съемные наконечники позволяют адаптировать инструмент под требуемые условия работы. Стоит отметить, что на более дешевых микрометрах данного типа наблюдается одна проблема. При недостаточно сильном зажатии наконечника возможен зазор, влияющий на точность. В том случае если очень точные данные не нужны и погрешность в пол миллиметра не имеет особого значения, то и универсальные модели будут вполне удобными. Приборы более дорогого ценового сегмента зачастую выполнены более качественно, и проблема болтающихся наконечников сведена к минимуму благодаря подгонке всех элементов инструмента.

Канавочные микрометры

Предназначены для замера габаритов в труднодоступных местах заготовок. Главной особенностью этого инструмента является полное отсутствие скобы. Внешне они напоминают проволочные модели, но оснащаются специальными тарелками, которые выступают в роли губок, захватывающих детали. С помощью данного оборудования можно зажать выступающие части заготовок губками и измерить их диаметр. Подобные приборы требуют аккуратного обращения, поскольку установленные на их конца тарелочки могут деформироваться при сильном ударе, что случается при падении.

Цифровой микрометр

Является одним из самых удобных устройств, поскольку он оснащается электронным дисплеем. С помощью такого оборудования можно намного удобнее и быстрее проводить замеры габаритов деталей заготовок. Питание данного прибора осуществляется благодаря установленной , такой как используется в наручных часах. По точности они ничем не уступают механическим, хотя и не являются такими долговечными. Электронный дисплей можно разбить, если не относиться к инструменту с достаточной осторожностью.

Более дорогие электронные модели имеют множество кнопок настройки, а также большую встроенную память, поэтому они сохраняют получаемые раннее данные и даже показывают время проведения обмеров. Подобные микрометры будут особенно удобны для промышленного применения, когда необходимо проводить множество измерений в сжатый период времени.

Существует еще как минимум десяток различных типов микрометров. Они являются очень узкоспециализированными, и нельзя сказать, что незаменимыми. Операции, которые они выполняют, можно сделать и другими типами микрометров, что может быть не так и удобно, но точность измерения от этого никак не пострадает. Все микрометры выпускаются в соответствии с требованиями ГОСТ. Для большинства моделей данного инструмента предусматривается отдельный государственный стандарт определяющий точность измерения. Микрометр желательно носить в специальном тубусе, чтобы предотвратить набивания пыли на винт, что убережет его от заклинивания.

© 2024 newcity55.ru - Строительный портал - Новый город