Пьезоэлектрический эффект и его применение. Прямой и обратный пьезоэлектрический эффект. Виды пьезоэлектрических материалов

Пьезоэлектрический эффект и его применение. Прямой и обратный пьезоэлектрический эффект. Виды пьезоэлектрических материалов

07.08.2023

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство общего и профессионального образования Свердловской области

Управление образования Верхнесалдинского городского округа

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа № 2 с углубленным изучением физики, математики, русского языка и литературы»

Исследовательский проект

(научно - техническое направление)

Пьезоэлектрический эффект: эффектен или эффективен?

Исполнитель: Ионкин Александр

учащийся 11 а класса ОУ №2

Руководитель: Шевчук Любовь Александровна

Учитель физики, высшая категория

Верхняя Салда 2008

Введение

«Ощущение тайны - наиболее прекрасное из

доступных нам переживаний. Именно это

чувство стоит у колыбели истинного искусства

и настоящей науки».

Альберт Эйнштейн

Необыкновенная, феноменальная физика? Что может быть в ней такого необыкновенного или удивительного? Конечно, физики считают физику захватывающей наукой, но это потому, что она составляет дело их жизни. Открытие новой субатомной частицы или нахождение нового способа объяснения знакомого явления может привести в сильный трепет. Однако небольшое, но приносящее удовлетворение волнение способно вызвать наблюдение и понимание повседневных явлений природы в окружающем нас мире. Ведь куда занятнее иметь дело с звукозаписью, дистанционными датчиками и зажигалками, если понимать их суть. Поистине удивительны, феноменальны успехи физики в объяснении повседневных явлений.

Мы живем в ХХI веке, веке новых технологий. Жизнь не стоит на месте. Происходит развитие науки, техники, промышленности, технологии и везде используются новейшие подходы к тем или иным процессам. Уже известные, открытые давно и кем-то явления, находят свое новое применение, второе рождение или находят использование в смежных с наукой и техникой областях - архитектуре, строительстве, связи и прочее.

Так и пьезоэлектрический эффект находит широчайшее применение. Мне кажется даже, что есть еще очень много скрытых резервов, ненайденных областей и сфер его применения.

В этом учебном году я начал работать над своим исследовательским проектом по научно-техническому направлению «Пьезоэлектрический эффект: эффектен или эффективен?».

При работе над проектом я ставил перед собой цель: выяснить возможности применения пьезоэлектрического эффекта в различных областях жизнедеятельности человека.

Для себя я выделил следующие задачи:

Познакомиться с историей открытия и изучения явления пьезоэлектрического эффекта;

Рассмотреть теорию пьезоэлектрического эффекта;

Познакомиться со сферами применения пьезоэлектрического эффекта;

Выполнить опыты по демонстрации прямого и обратного пьезоэффектов и предложить способ определения значения напряжения, возникающего при прямом пьезоэффекте.

пьезоэлектрический напряжение эффект

История открытия и исследования пьезоэлектрического эффекта

Пьезоэлектрический эффект был открыт в 1880 году братьями Пьером и Жаком Кюри. Они обнаружили, что если кристаллы некоторых диэлектриков (сегнетовой соли, кварца и др.) подвергнуть механическому воздействию, сжатию, то на их поверхности появляются электрические заряды противоположных знаков, или, как теперь принято говорить, в кристалле возникает наведенная поляризация, которая создает внешнее и внутреннее по отношению к кристаллу электрические поля. Это явление - возникновение электрического поля в результате давления - было названо прямым пьезоэффектом.

Было ли это открытие случайным или ему предшествовала научная гипотеза? При исследовании электрических свойств твердых диэлектриков кристаллической структуры Пьер Кюри сформулировал весьма общий принцип, который теперь называется принципом Кюри. Смысл его состоит в следующем: явление обладает всеми признаками симметрии, которыми обладает причина, их породившая; асимметрия явления предопределена асимметрией причины. Поскольку в вершинах кристаллической решетки расположены ионы противоположных знаков, то суммарный заряд кристаллов любой формы равен нулю. Однако если центры положительных и отрицательных зарядов не совпадают, то дипольный момент кристалла отличен от нуля и обладает поляризацией. Поэтому если дипольный момент кристалла в недеформированном состоянии равен нулю, то в результате деформации кристалла под механическим воздействием центры положительных и отрицательных ионов могут сместиться один относительно другого и на поверхностях кристалла появляются заряды противоположных знаков. Возможность такого смещения зависит от симметрии (формы) кристалла.

Сформулированный принцип и теория групп позволили выделить классы кристаллов, которые обладают пьезоэффектом. Обратный пьезоэффект состоит в том, что свободные кристаллы, обладающие прямым пьезоэффектом, под воздействием электрического поля деформируются. Вскоре братья Кюри экспериментально подтвердили обратный пьезоэффект.

Первые количественные измерения, устанавливающие связь величины заряда с давлением на кристаллах сегнетовой соли, были проведены Поккельсом в 1894 году.

В математическую форму эти количественные соотношения были облечены немецким ученым Фойгтом (Voigt) в 1910 году. В 1928 году он привел достаточно полную систему этих соотношений, которая обобщала накопленные знания в области пьезоэлектричества за предшествующий период. Соотношения, полученные Фойгтом, являются основополагающими для построения математической модели в электроупругости.

Сразу же широкое применение пьезоэффект находит в грамзаписи, а на производстве -- в многочисленных пьезодатчиках систем контроля и управления.

С середины 30?х годов XX века пьезоэлементы начинают применять в радиолокационных системах: специальные резонаторы и фильтры, изготовленные из природного кварца, выделяли из широкого спектра радиоволну, отраженную от цели, и усиливали ее. В этих устройствах работал уже принцип обратного пьезоэффекта: при подаче на пьезоэлектрик электрического тока кристалл деформировался и в нем возникали колебания, резонирующие с волной, пропускаемой фильтром частоты. Во время второй мировой войны системы ПВО, разработанные англичанами на основе кварцевой пьезоэлектрики, обнаруживали немецкие самолеты на дальних подступах, лишая противника преимущества внезапности. Во многом именно благодаря этому провалился план Геринга разгромить Великобританию силами Люфтваффе.

Развитие авиа-- и ракетостроения в 50?60?е годы потребовало массового производства более точных приборов как для бортовых, так и для наземных систем навигации и радиолокации. Подходящего же (без структурных дефектов) природного кварца добывалось совсем немного. Настоящий пьезотехнический бум начался с середины пятидесятых годов, когда научились выращивать искусственный кристалл кварца -- впервые это удалось сотруднику Института кристаллографии имени Шубникова АН СССР (ИКАН)Александру Штенбергу.

Лангасит - перспективный пьезоэлектрический материал

В 1983 году группа советских ученых физфака МГУ и Института кристаллографии выращивают первый кристалл лангасита (лантан галлиевый силикат -- La 3 Ga 5 SiO 14). Первоначально его планировали использовать в качестве активного элемента твердотельных лазеров с изменяемой частотой излучения, некоторые параметры материала не устроили специалистов по нелинейной оптике. Зато его пьезоэлектрические качества оказались настолько перспективными, что в немыслимые по тем временам сроки, уже через два года после открытия, началось производство кристаллов лангасита на нескольких растовых установках Подольского опытно-химического завода (кураторами выступали специалисты кафедр кристаллографии МИСиСа и ИКАНа). Тогда же «Фонон» -- головной институт по разработке пьезотехники, незадолго до того отпочковавшийся от столичного предприятия «Пьезо», получил задание разработать приборы на лангасите для головок наведения ракет.

Интерес к лангаситу был вызван тем, что он имел более широкую полосу пропускания по сравнению с кварцем и в то же время в отличие от танталата и ниобата лития обладал температурной стабильностью. Ширина пропускания характеризуется спектром сопутствующих основной волне частот, и чем шире полоса пропускания полезного сигнала в усилителях промежуточных частот, тем больший объем цифровой информации может обработать приемопередающая радиоаппаратура и, соответственно, выдать более точные координаты быстролетящей цели. Важность миниатюрных широкополосных фильтров трудно переоценить, когда речь заходит, например, о сотовой связи. Так, для работы телефонов распространенного сейчас стандарта GSM (передача речи и стационарных картинок) требуется полоса пропускания всего в 200 кГц, а для W-CDMA, которому прочат роль всемирного стандарта следующего поколения, поскольку он позволяет передавать видеоизображение в режиме реального времени, необходима полоса шириной уже более 5 МГц. То есть при частоте базовой волны в 2 ГГц показатель ширины пропускания фильтра должен быть выше 0,3%. У кварца показатель ширины пропускания в зависимости от частоты основной волны составляет 0,1?0,3%, у лангасита -- от 0,3 до 1%.

На сегодняшний день Россия заключила контракт с французской Temex Microsonics. В их совместный проект в рамках европейской инновационной программы Eureka в течение трех лет будет инвестировано около 3 млн евро. Более 2 млн предоставит французская сторона, в первую очередь правительство Франции, более 200 тыс. выделит Фонд Бортника, еще около 700 тыс. собственных средств вложит «Фомос». В результате российская компания выйдет с новым пьезоэлектрическим (от греческого piezo -- давлю) материалом лангаситом на европейский рынок, а Temex Microsonics организует из него серийное производство фильтров для получающих все большее распространение мобильных систем нового поколения (стандарт W-CDMA).

Физическая теория пьезоэлектрического эффекта

Диэлектрики (по греч. dia - через, сквозь, по англ. elec - электрический) - это вещества, которые не проводят электрический ток. Причиной этого является отсутствие у диэлектриков свободных зарядов. Положительные и отрицательные заряды в молекулах и атомов диэлектриков связаны друг с другом кулоновскими силами, значительно превосходящими силы, с которыми внешнее электрическое поле может воздействовать на эти заряды. Оно не может оторвать их друг от друга, а может лишь сместить на расстояние порядка размеров самой молекулы (10 -10 м). Поэтому положительные и отрицательные заряды в молекулах диэлектриков являются связанными. Они не могут свободно передвигаться по диэлектрику, внесенному во внешнее электрическое поле.

В молекулах веществ можно указать точку, в которой суммарный заряд электронной оболочки молекулы будет оказывать на ее положительные заряды такое же воздействие, какое оказывали бы все отрицательные заряды этой молекулы, будучи распределены по всему ее объему.

Эта точка называется центром тяжести отрицательных зарядов молекулы. Точно так же можно указать центр тяжести положительных зарядов, т.е. точку, в которой суммарный положительный заряд молекулы будет оказывать на ее отрицательные заряды такое же воздействие, какое на них оказывают все положительные заряды молекулы.

Диэлектрики, в молекулах которых центры тяжести положительных и отрицательных зарядов совмещены в отсутствии внешнего электрического поля называют неполярными диэлектриками. Примером таких диэлектриков могут быть газы: водород, азот, кислород. Диэлектрики, в молекулах которых центры тяжести положительных и отрицательных зарядов пространственно разделены и в отсутствии внешнего электрического поля называются полярными. Примером полярных молекул служат молекул служат молекулы льда.

Смещение зарядов в молекулах и атомах диэлектрика в противоположных направлениях под действием электрического поля, в результате чего на поверхностях диэлектрика возникают нескомпенсированные связанные заряды, называется поляризацией диэлектрика.

У однородных и изотопных твердых аморфных диэлектриков, а также диэлектриков жидких и газообразных, в отсутствие внешнего электрического поля поляризация всегда отсутствует из-за разориентации дипольных моментов отдельных молекул. Если такой поляризованный диэлектрик удалить из внешнего электрического поля, то тепловое хаотическое движение, всегда присущее молекулам, быстро ликвидирует связанные заряды на его поверхностях и при этом суммарный дипольный момент каждой единицы объема диэлектрика станет равен нулю, то есть поляризация исчезнет.

Однако в природе существуют кристаллические диэлектрики, молекулы которых образуют группы, обладающие самопроизвольной (спонтанной) поляризацией даже в отсутствие внешнего электрического поля. Понятно, что эти группы могут быть образованы только из полярных молекул. Такие группы молекул называются доменами. Поведение молекул, входящих в состав домена, объясняется законами квантовой механики.

Диэлектрики, обладающие доменной структурой, называют сегнетоэлектриками. Название это происходит от слов «сегнетова соль» - наиболее типичного сегнетоэлектрика, который в свою очередь, был назван в честь французского аптекаря Э. Сегнетта, впервые синтезировавшего это вещество.

Все сегнетоэлектрики - кристаллы.

При помещении кристалла неполяризованного сегнетоэлектрика во внешнее электрическое поле и увеличении напряженности этого поля домены начнут все более ориентироваться по полю, чему препятствует тепловое разориентирующее движение молекул.

Рисунок 1 Сегнетоэлектрик во внешнем поле

При достижении некоторой достаточно большой напряженности все домены кристалла окажутся ориентированы по полю. Такое состояние диэлектрика называется насыщением, а соответствующая напряженность - напряженностью насыщения.

Если удалить диэлектрик из электрического поля, то он сохранит поляризацию.

Способность сохранять поляризацию и в отсутствие внешнего электрического поля является самой главной особенностью, отличающей сегнетоэлектрики от остальных диэлектриков.

Чтобы располяризовать сегнетоэлектрик, надо его поместить в электрическое поле, антинаправленное первоначальному.

В настоящее время известно несколько сотен сегнетоэлектриков. Второй существенной особенностью, отличающей их от остальных диэлектриков, является чрезвычайно высокое значение относительной диэлектрической проницаемости, достигающей у отдельных сегнетоэлектриков нескольких тысяч, тогда как у остальных диэлектриков она колеблется в пределах десяти и только у воды достигает 81. Третьей особенностью сегнетоэлектриков является зависимость относительной диэлектрической проницаемости от напряженности внешнего электрического поля, тогда как у остальных диэлектриков она постоянна.

Все сегнетоэлектрики обладают такими замечательными свойствами лишь в определенном интервале температур. Например, сегнетова соль имеет доменную структуру лишь в интервале температур между -15 0 С и 22,5 0 С. При иных температурах она ведет себя как обычный диэлектрик. Например, у кварца до температуры 200 градусов Цельсия пьезоэлектрические свойства изменяются незначительно, а затем до температуры 576 градусов Цельсия начинают медленно ослабевать. При 576 градусах происходит перестройка кристаллической решетки кварца, в результате которой пьезоэлектрические свойства у него исчезают. При понижении температуры изменение свойств кварца происходит в обратном направлении.

Эти переходные температуры, при которых диэлектрик становится сегнетоэлектриком, называются точками Кюри, по имени братьев Пьера и Жолио Кюри, которые обнаружили это явление.

У большинства диэлектриков поляризация возникает под действием внешнего электрического поля, а у пьезоэлектриков в результате механического воздействия, например, при сжатии или растяжении.

Различают продольный и поперечный пьезоэффект.

Возникновение зарядов на гранях, перпендикулярных полярной оси, при однородной деформации кристалла вдоль этой оси называется продольным пьезоэффектом. Однако можно вызвать появление зарядов на тех же гранях, сжимая или растягивая кристалл перпендикулярно полярной оси, если только при этом происходит растяжение или сжатие кристалла вдоль полярной оси. Это явление называется поперечным пьезоэффектом. Его существование обуславливается связью между продольными и поперечными деформациями твердого тела.

Рисунок 2 Продольный (а) и поперечный (б) пьезоэффекты

Пьезоэлектриками являются все сегнетоэлектрики, а также некоторые другие диэлектрики, например, кварц, некоторые сорта керамики.

Пьезоэлектрическими свойствами могут обладать только ионные кристаллы. Пьезоэлектрический эффект возникает в том случае, когда под действием внешних сил кристаллическая подрешетка из положительных ионов деформируется иначе, чем кристаллическая подрешетка из отрицательных ионов. В результате происходит относительное смещение положительных и отрицательных ионов, приводящее к возникновению поляризации кристалла и поверхностных зарядов. Поляризованность в первом приближении прямо пропорциональна деформации, которая, в свою очередь, прямо пропорциональна силе. Следовательно, поляризованность прямо пропорциональна приложенной силе. Между разноименно заряженными гранями деформированного диэлектрика возникает разность потенциалов, которую можно измерить, а по ее значению сделать заключение о величине деформаций и приложенных силах.

Физическая картина поляризации твердых диэлектриков раскрывается квантовой механикой. Я рассмотрю только формальную теорию поляризации.

Пьезоэлектрики - кристаллы, имеющие решетку из положительных и отрицательных ионов, у которых при деформации их в определенных направлениях на гранях, перпендикулярных направлению деформирующей силы, возникают поверхностные связанные заряды.

Рисунок 3 Решетка кварца

Если эти грани снабдить металлическими обкладками, то на их внешней поверхности появятся наведенные свободные заряды того же знака, что и связанные. Между обкладками получится разность потенциалов.

Классическим (и практически важным) пьезоэлектриком является кварц (SiO 2). Элементарная ячейка его кристаллической решетки содержит три молекулы, состоящие из ионов кремния (положительных) и кислорода (отрицательных). Они схематично показаны на рисунке 3,а (недеформированный кристалл): положительные ионы - заштрихованные кружки, отрицательные - белые.

При сжатии кристалла в направлении Х 1 симметрия ячейки нарушается (рисунок 3,б). На верхней грани кристалла появляется связанный отрицательный заряд, на нижней - такой же положительный. При растяжении (рисунок 3,в) знаки зарядов изменяются на противоположные.

Поверхностная плотность зарядов при малых относительных деформациях пропорциональны возникшему в кристалле механическому напряжению:

Данную зависимость называют уравнением прямого пьезоэффекта.

Коэффициент пропорциональности - пьезомодуль d - выражается в кулонах на ньютон (Кл Н -1). Для кварца

d =2 10 -12 Кл/Н.

Рассмотрим обратный пьезоэффект: при подаче на кристалл электрического напряжения он деформируется, причем знак деформации зависит от направления внешнего электростатического поля

Рисунок 4 Схематичные изображения прямого (а, б) и обратного (в, г) пьезоэффектов. Стрелками F и Е изображены внешние воздействия - механическая сила и напряженность электрического поля. Штриховыми линиями показаны контуры пьезоэлектрика до внешнего воздействия, сплошными линиями - контуры деформации пьезоэлектрика (для наглядности во много раз увеличены); Р - вектор поляризации

Пусть в кристалле создано механическое напряжение =10 4 Па. При этом плотность возникших зарядов составит

2 10 -8 Кл/м 2

и в кристалле (=4,5) образуется электростатическое поле с напряженностью

При толщине кристалла h =10 -2 м на обкладках его граней получится разность потенциалов 5 В.

При подаче на пьезоэлектрик переменного электрического напряжения он приходит в вынужденные механические колебания. При резонансе (а пластина обладает собственной частотой, которая обратно пропорциональна толщине кристалла) амплитуда колебаний резко возрастает. Если кристалл опущен в жидкость, акустическое сопротивление которой не слишком отличается от акустического сопротивления кристалла, то в жидкости возбудятся интенсивные механические волны. Обычно применяют ультразвуковые частоты, при которых длина волны в жидкости невелика, - это дает возможность получить волну, распространяющуюся без заметного поглощения, что представляет практический интерес.

Ультразвуковую волну можно создать в твердом теле (например, в металлической отливке), где волна распространяется без заметного поглощения. Но если в металле имеется полость, случайно возникшая при изготовлении отливки, то на ней волна рассеется. Поэтому, зондируя металл ультразвуковой волной, можно находить, не разрушая его, внутренние дефекты.

Так как ускорения при ультразвуковых волнах очень велики - при амплитуде х m =10 -6 м и частоте =10 5 Гц амплитуда ускорения составит

4 10 5 м/с 2 =4 10 4 g,

То ультразвуковые волны используются для очистки поверхности металлических тел (опущенных в жидкость), для создания эмульсий (взвесей капелек одной жидкости в другой, в ней не растворяющейся) и многих других практических применений.

Как измерить значение высокого напряжения, возникающего при пьезоэлектрическом эффекте?

Пьезоэлемент - основная часть пьезозажигалки. Поэтому все свои опыты я проводил используя пьезозажигалку. Для ее удобного использования я вынул два вывода из пластмассового корпуса.

Чтобы при демонстрации прямого пьезоэффекта определить напряжение на выходе, один вывод от зажигалки я соединил с корпусом демонстрационного электрометра, другой - со стержнем электрометра. При плавном нажатии на кнопку зажигалки стрелка электрометра начинает отклоняться. Но определить максимальное значение напряжения с помощью электрометра мне не удалось, так как стрелка прибора выходит за пределы шкалы (мы знаем, что цена деления шкалы электрометра примерно 300 В).

Попробую определить, в каких пределах будет лежать полученное напряжение. Для этого проведем опыт с люминесцентной лампой. Удалю, стартер из схемы лампы и попробую лампу, включенную в сеть зажечь. Лампа не зажигается. Для того чтобы в лампе наблюдался самостоятельный разряд необходимо иметь разность потенциалов порядка десяти киловольт. Попробую создать такие условия с помощью пьезоэлемента от зажигалки, включенного вместо стартера. Один из выводов пьезозажигалки соединяем с одним из электродов лампы, другой - с проводом, намотанным на стеклянную поверхность лампы. При нажатии на клавишу пьезозажигалки лампа загорается.

Для более точного определения напряжения на выходе зажигалки я использовал демонстрационные весы. К дну одной из чашек весов приклеил квадрат из металлической фольги и с помощью очень тонкой проволоки соединил его с одним контактом зажигалки. Затем металлизированную чашечку перевернул и установил на весы. Сверху этой чашечки расположил еще один квадрат из фольги (воспользовался конструкцией весов) и соединил его со вторым контактом зажигалки. Две металлические пластинки из фольги образуют плоский конденсатор. Уравновесил чашки весов с помощью грузов.

При плавном нажатии на клавишу зажигалки возникает сила электростатического притяжения между пластинами и весы выходят из равновесия. По отклонению стрелки весов определяю массу гирек, необходимых для восстановления равновесия. Тем самым я смогу измерить максимальное значение силы между пластинками и вычислить напряжение. Я провел 3 опыта в которых использовал пластинки площадью S=1,21 10 -2 м 2 , расстояние между ними устанавливал 2 10 -2 м, среднее значение в опытах массы m=7 10 - 4 кг.

Зная, что

Используя формулу 1, полученную для вычисления напряжения я получил следующие результаты

При проведении опытов по измерению напряжения на выходе пьезозажигалки я наблюдал и обратный пьезоэффект. Так, разряжая пластины конденсатора посредством короткого замыкания, я слышал щелчок пьезоэлемента вследствие его деформации при разряде конденсатора.

Применение пьезоэлектрического эффекта

Основное применение пьезоэффекта: - взаимопреобразование механических и электрических колебаний - датчики частот, датчики и источники ультразвуковых колебаний, звукосниматели, манометры и т.д., так как пьезоэлектрики являются обратимыми электромеханическими преобразователями, т. е. способны преобразовывать механическую энергию в электрическую и, наоборот, электрическую энергию в механическую. Преобразователи, основанные на использовании прямого пьезоэффекта, называют преобразователями-генераторами; они имеют механический вход и электрический выход.

Преобразователи, основанные на использовании обратного пьезоэффекта, называют преобразователями-двигателями; они имеют электрический вход и механические выходы. Известно множество пьезоэлектрических устройств, основанных на использовании как прямого, так и обратного эффектов. Прямой эффект используется, например, в микрофонах, звукоснимателях, датчиках механических сил, перемещений и ускорений, бытовых зажигалках для газа и др. Обратный эффект послужил основой для создания телефонов, громкоговорителей, ультразвуковых излучателей, реле, двигателей и т. п.

Известны и нашли практическое применение пьезоэлектрические преобразователи - пьезоэлектрические трансформаторы (сокращенно пьезотрансформаторы). Схематически устройство пьезотрансформатора изображено на рисунке 5, поясняющем, что он представляет собой пьезоэлектрический преобразователь в виде четырехполюсника, имеющего только электрические вход и выход.

Рисунок 5 Пьезотрансформатор

Действие пьезотрансформатора основано на использовании как прямого, так и обратного пьезоэффектов. Электрическое напряжение, приложенное к входным электродам пьезотрансформатора, в результате обратного пьезоэффекта вызывает деформацию всего объёма пьезоэлектрика и на выходных электродах возникает электрическое (вторичное) напряжение как следствие прямого пьезоэффекта. В пьезотрансформаторе происходит как бы двойное преобразование энергии - электрической в механическую, а затем механической в электрическую. Как и электромагнитный трансформатор, пьезотрансформатор используют для преобразования электрического напряжения. Подбором размеров электродов и их расположения можно получать различные значения коэффициента трансформации. Пьезотрансформаторы обычно используют в резонансном режиме, при котором достигаются большие значения коэффициента трансформации (порядка нескольких сотен). Пьезотрансформаторы используют в высоковольтных источниках вторичного электропитания.

Пьезоэлемент - тело из пьезоэлектрика определенных размеров, геометрической формы и ориентации относительно основных кристаллографических осей (или направления поляризации в случае пьезокерамики, имеющее проводящие обкладки (электроды).

Рисунок 6 Пьезоэлемент: 1 - пластина из пьезоэлектрика;2 - электроды из проводящего материала, наложенные на грани пластины

Пьезоэлемент представляет собой электрический конденсатор с твёрдым (кристаллическим или керамическим) диэлектриком. Особенностью такого конденсатора является наличие пьезоэлектрических свойств у диэлектрика, заполняющего пространство между электродами. Если пьезоэлемент используется как электромеханический преобразователь, то его ориентацию выбирают исходя из требований достижения наибольшего эффекта. Внешние силы (как механические, так и электрические), воздействующие на пьезоэлемент, могут быть как распределенными, так и сосредоточенными. Распределенные силы позволяют достичь более эффективного преобразования. Поэтому для более эффективной поляризации объема пьезоэлектрика используют электроды, покрывающие всю площадь граней пьезоэлемента, а для создания равномерно распределенного механического напряжения - накладки из упругого материала, хорошо прилегающие к граням пьезоэлемента и преобразующие внешние сосредоточенные силы в распределенные.

Внешняя сила вызывает деформацию пьезоэлемента, его поляризацию и возникновение на электродах противоположных электрических зарядов. Величина электрического заряда или возникающего при этом напряжения может быть измерена соответствующим измерительным прибором, присоединенным к электродам пьезоэлемента. Внешняя сила сообщает пьезоэлементу энергию в виде упругой деформации, которая может быть рассчитана, если известны величины воздействующей силы и жёсткость пьезоэлемента. Одновременно с деформацией пьезоэлемента на его электродах возникает электрическое напряжение. Следовательно, часть энергии, сообщаемой пьезоэлементу внешней силой, оказывается электрической и её величина может быть рассчитана, если известны электрическое напряжение на электродах и ёмкость пьезоэлемента.

Сегодня говорят о перспективном применения пьезокерамических материалов. Пьезоэлектрические материалы условно можно разбить на две группы: пьезоэлектрические монокристаллы и пьезокерамика.

Природные пьезоэлектрические материалы имеют достаточно высокую стоимость. В связи с этим потребности бурно развивающейся электроники в настоящее время удовлетворяются синтетическими пьезоэлектрическими монокристаллами, которые выращиваются в специальных установках. Пьезоэлектрические свойства таких кристаллов с достаточно высокой повторяемостью можно задавать путем композиции входящих в него компонентов.

Выращенные кристаллы определенным образом режутся на пластины, некоторые (сегнетоэлектрики) поляризуются, и из них путем шлифования и нанесения электродов изготавливаются пьезоэлектрические элементы.

Пьезоэлектрическая керамика по физическим свойствам это поликристаллический сегнетоэлектрик, представляющий собой химическое соединение или твердый раствор (порошок) зерен (кристаллитов).

По химическому составу это сложный оксид, включающий ионы двухвалентного свинца или бария, а также ионы четырехвалентного титана или циркония. Путем изменения основного соотношения исходных материалов и введения добавок синтезируют разные составы пьезокерамики, обладающие определенными электрофизическими и пьезоэлектрическими характеристиками.

Наибольшее распространение получила группа пьезокерамических материалов типа ЦТС (цирконата-титаната свинца). Вместе с тем используется керамика на основе титаната бария (ТБ) и титаната свинца (ТС). В последние годы разрабатываются новые пьезокерамические материалы со свойствами, позволяющими в некоторых случаях использовать их вместо более дорогостоящих пьезоэлектрических кристаллов. В частности, разработана и производится группа материалов на основе ниобата свинца, которая уже нашла практическое применение благодаря возможности ее использования в диапазоне частот до 30 и более МГц. Значительные исследования проводятся по созданию пьезокерамических композитных материалов, а также многослойной керамики. Зарубежные производители в зависимости от пьезоэлектрических свойств делят ее на сегнетожесткую и сегнетомягкую. В отечественной практике существует дополнительное деление на керамику средней сегнетожесткости, а также выделяются высокостабильные, высокотемпературные и т. п. материалы.

В отличие от пьезоэлектрических кристаллов, пьезокерамические элементы изготавливаются методом полусухого прессования, шликерного литья, горячего литья под давлением, экструзии или изостатического прессования с последующим обжигом на воздухе при температуре 1000-1400 0 С. С целью уменьшения пористости обжиг может проводиться в среде кислорода, или элемент изготавливается с помощью метода горячего литья. По специальной технологии на поверхность заготовок наносятся электроды.

После этого керамику делают пьезоэлектрической с любым выбранным направлением поляризации путем помещения ее в сильное электрическое поле при температуре ниже так называемой точки Кюри. Поляризация обычно является окончательным процессом при изготовлении пьезокерамических элементов, хотя за ним следует термостабилизация и контроль параметров.

Пьезоэлектрическая керамика представляет собой твердый, химически инертный материал, совершенно нечувствительный к влажности и другим атмосферным воздействиям. По механическим качествам она подобна керамическим изоляторам.

Рисунок 7 Пьезоэлементы различной конфигурации

В зависимости от предназначения пьезоэлементы могут иметь самую разнообразную конфигурацию -- от плоской до объемной (сферы, полусферы и т. п.)

Пьезоэлектрические элементы идеальны при использовании в качестве электромеханических преобразователей. Они достаточно широко используются для изготовления пьезокерамических компонентов, узлов и устройств. Некоторые пьезокерамические элементы уже изначально могут выполнять функции компонента или узла и не нуждаются в дополнительной доработке. Все изделия, изготовленные на базе пьезокерамики, подразделяют на следующие основные группы: генераторы, датчики (сенсоры), актюаторы (пьезоприводы), преобразователи и комбинированные системы.

Пьезокерамические генераторы преобразуют механическое воздействие в электрический потенциал, используя прямой пьезоэффект. Примерами могут служить искровые воспламенители нажимного и ударного типов, применяемые в разного рода зажигалках и поджигающих системах, а также твердотельные батареи на основе многослойной пьезокерамики, применяемые в современных электронных схемах.

Рисунок 8 Пьезоэлектрические датчики

Пьезокерамические датчики преобразуют механическую силу или движение в пропорциональный электрический сигнал, то есть также основаны на прямом пьезоэффекте.

В условиях активного внедрения компьютерной техники датчики являются незаменимыми устройствами, позволяющими согласовывать механические системы с электронными системами контроля и управления.

Выделяются два основных типа пьезокерамических датчиков: осевые (механическая сила действует вдоль оси поляризации) и гибкие (сила действует перпендикулярно оси поляризации).

В осевых датчиках в качестве пьезоэлементов используют диски, кольца, цилиндры и пластины. В качестве примеров можно привести датчики ускорения (акселерометры), датчики давления, датчики детонации, датчики разрушения и т.п. Примером гибких датчиков могут быть датчики силы и ускорения.

Пьезокерамические актюаторы (пьезоприводы) строятся на принципе обратного пьезоэффекта и поэтому предназначены для преобразования электрических величин (напряжения или заряда) в механическое перемещение (сдвиг) рабочего тела. Актюаторы подразделяются на три основные группы: осевые, поперечные и гибкие. Осевые и поперечные актюаторы имеют еще общее название -- многослойные пакетные, так как набираются из нескольких пьезоэлементов (дисков, стержней, пластин или брусков) в пакет. Они могут развивать значительное усилие (блокирующую силу) до 10 кН при управляющем напряжении 1 кВ, но при очень малых отклонениях рабочей части (от единиц нанометров до сотен микрон). Такие актюаторы также называют мощными.

Гибкие актюаторы (биморфы) развивают незначительную блокирующую силу при малых (сотни микрон) отклонениях рабочей части. Однако американской компании APC International Inc. удалось создать и выйти на рынок с новым типом пластинчатого биморфа -- «ленточным актюатором» (зарегистрированная торговая марка). Ленточный актюатор может обеспечивать блокирующую силу 0,95 Н и величину отклонения 1,2 мм или отклонение до 3 мм и блокирующую силу 0,6 Н.

Гибкие актюаторы относятся к группе маломощных. К этой же группе будут относиться и перспективные осевые актюаторы, представляющие собой моноблок, изготовленный по технологии многослойной пьезокерамики.

Пакетные актюаторы могут производиться предприятиями, не связанными с производством пьезокерамики. Гибкие же и осевые актюаторы из многослойной керамики сами по себе являются пьезокерамическими элементами. Их могут производить только предприятия, владеющие технологиями и оборудованием для производства пьезокерамических элементов.

Пьезокерамические преобразователи предназначены для преобразования электрической энергии в механическую. Так же как и актюаторы, основываются на принципе обратного пьезоэффекта.

Преобразователи в зависимости от диапазона частот подразделяются на три вида:

звуковые (ниже 20 кГц) -- зуммеры, телефонные микрофоны, высокочастотные громкоговорители, сирены и т. п.;

ультразвуковые -- высокоинтенсивные излучатели для сварки и резки, мойки и очистки материалов, датчики уровня жидкостей, дисперсионные распылители, генераторы тумана, ингаляторы, увлажнители воздуха. Значительной группой выделяются так называемые ультразвуковые измерители расстояния в воздушной среде, являющиеся пьезокерамическими компонентами. Они используются в качестве измерителей расстояния для автотракторной техники, сенсоров наличия и движения в охранных системах, в уровнемерах, для дистанционного контроля и управления, в устройствах отпугивания птиц, зверей и сельскохозяйственных вредителей и т. д. Производятся устройства трех типов: передающие, приемные и приемо-передающие;

высокочастотные ультразвуковые -- оборудование для испытания материалов и неразрушающего контроля, диагностика в медицине и промышленности, линии задержки и т. д.

Комбинированные пьезокерамические системы преобразуют электрические величины в электрические, при последовательном использовании обратного и прямого пьезоэффектов. В качестве примеров таких систем можно привести эхолоты, измерители потоков, пьезотрансформаторы, «искатель ключа».

Несмотря на то, что пьезоэффект был открыт еще в XIX веке, а со второй половины XX активно развивалась теория и технология создания пьезокерамических материалов, считается, что пьезокерамика -- один из перспективных материалов века XXI. Причиной такого взгляда является то, что замечательные свойства, присущие пьезокерамике, до сих пор не в полной мере востребованы наукой, техникой и технологиями.

Активное использование пьезокерамики в различных областях началось в 60-70 годах XX века. Достаточно хорошо были изучены и использованы свойства пьезокерамических датчиков и пьезокерамических преобразователей. В настоящее время пьезокерамика широко используется для ультразвуковой диагностики в медицине, авиационном и железнодорожном транспорте, энергетике, нефтяном и газовом комплексе; силовая пьезокерамика -- в ультразвуковой сварке, чистке поверхностей, нанесении покрытий, сверлении и т. д.

В то же время пьезокерамика еще недостаточно используется для создания генераторов, актюаторов и в комбинированных системах. Однако современные требования по энергосбережению, миниатюризации, адаптивности к компьютерным системам управления и контроля все чаще заставляют производителей техники и оборудования обращаться к производителям пьезокерамики с целью совместного поиска тех или иных технологических решений с помощью пьезокерамики. В результате появляются новые типы пьезокерамики, создаются новые и совершенствуются известные пьезокерамические элементы и компоненты. Особое внимание в настоящее время уделяется пьезокерамическим трансформаторам и актюаторам.

Хотя настоящее потребление пьезотрансформаторов не так велико, потенциал их применения в будущем, тем не менее огромен.

Одним из перспективных направлений является их использование в бытовых и производственных газонаполненных осветительных приборах в качестве резонансных DC-AC конверторов. Сейчас для этих целей применяются самые разные компоненты. В основу перспективных осветительных приборов уже заложены принципы, позволяющие экономить до 80 % электроэнергии по сравнению с ныне используемыми приборами. Поэтому единственный параметр, которому должны отвечать перспективные конверторы, являются их минимальные геометрические размеры. Изучение рынка подтверждает, что разработчиков осветительной техники интересуют не столько сравнительные характеристики по напряжению или по потребляемой мощности конверторов, сколько размеры, позволяющие устанавливать их в цоколе лампы. Последние исследования показали целесообразность использования многослойных пьезокерамических трансформаторов в новой осветительной технике. Были разработаны прототипы таких конверторов, удовлетворяющие практически всем требованиям, кроме цены. Поэтому производители пьезокерамики активно работают над технологией, которая позволила бы добиться снижения их себестоимости.

Другим перспективным направлением использования пьезотрансформаторов является их применение в силовых устройствах. На рынке появились современные устройства, которые используют не традиционные однослойные (Rosen Type) пьезотрансформаторы, а многослойные трансформаторы. Примерами этого могут служить дисплеи обратного свечения на жидких кристаллах (The liquid crystal display back light) и системы управления холодным катодом флуоресцентного освещения (Driving cold cathode fluorescent lightning). В качестве достоинств многослойных пьезотрансформаторов по сравнению с традиционными можно отметить их малый размер (особенно толщина) и меньшее потребление энергии. Однако для современных многослойных трансформаторов, которые появились на рынке, определяющими факторами по-прежнему являются цена и размеры, над снижением которых активно работают производители.

Существует большая вероятность использования пьезотрансформаторов в перспективных телевизионных и компьютерных дисплеях. Уже отработаны прототипы таких дисплеев, которые получили название ПЭД -- Полевые Эмиссионные Дисплеи (FED -- Field Emission Display). Это плоские панельные дисплеи, имеющие более высокую разрешающую способность и четкость изображения по сравнению с современными. Однако уже сейчас разрабатывается новое поколение экранов с немерцающим изображением (Flicker Free Image Screen), для питания которых также предусматривается использование многослойных пьезокерамических трансформаторов. Рынок телевизионной и компьютерной техники изумляет своими новинками и заставляет производителей пьезокерамических элементов интенсифицировать исследования и разработки в данной области.

Пакетные актюаторы (Stack Acuators) уже сейчас применяются в космической, лазерной технике и оптических инструментах для настройки антенн и зеркал с манометрической точностью. Считается, что они найдут более широкое использование там, где важно развить движущее усилие при минимальном угле перемещения.

Одним из перспективных направлений является их применение в точной настройке станков. Благодаря своей жесткой структуре пьезоприводы являются идеальным инструментом для быстрой и точной их настройки. Прилагая фиксированное напряжение к шаблону в фазе с вращением шпинделя, можно обеспечить высокую точность обработки детали рабочим телом станка.

В станкостроении планируется их использование и для подавления (компенсации) вибрации. Нежелательную вибрацию станков можно компенсировать с помощью многослойных актюаторов, работающих в противофазе с вибрационными колебаниями. Это, в свою очередь, будет способствовать повышению качества конечного изделия, а также позволит избежать чрезмерного износа инструмента и существенно снизит уровень шума станка. Компенсаторы вибрации могут найти применение не только в станкостроении, но и в других сферах.

Еще одним перспективным направлением использования пакетных актюаторов является управление гидравлическими клапанами. Примером этого могут служить последние разработки пьезокерамических высокоскоростных клапанов как для топливной аппаратуры дизельных двигателей легковых и грузовых автомобилей, так и для газораспределительных систем дизелей и двигателей внутреннего сгорания.

Ярким примером комплексного использования пьезокерамических элементов, узлов и деталей на их основе могут послужить совместные разработки американской компании APC International, Ltd. c производителями комплектующих для автомобильной промышленности.

Современные, технически сложные автомобили постоянно требуют внедрения дополнительной электроники для повышения надежности, безопасности и комфорта.

Таким образом, пьезокерамика благодаря своим уникальным свойствам находит все большее применение в различных областях техники и технологии. Иностранные производители пьезокерамики, элементов и компонентов на ее базе, пытаясь более полно удовлетворить современные требования рынка, проводят исследования и конструкторские работы с целью улучшения параметров керамики, разрабатывают ее новые типы, на что выделяются значительные финансовые средства. С целью удешевления продукции разрабатываются новые технологии, более энергосберегающие и позволяющие автоматизировать процессы производства. Считается, что только крупные компании-производители пьезокерамики, оснащенные передовыми технологиями и современным оборудованием, смогут в полной мере удовлетворить требования мирового рынка.

Пьезоэффект на службе градообразующего предприятия ОАО «Корпорация ВСМПО-АВИСМА»

«Корпорация ВСМПО -Ависма» ведущее предприятие в мире по производству полуфабрикатов из титановых сплавов для авиационной промышленности, атомной энергетики, медицины и других сфер. Наше предприятие является одним из основных поставщиков таких известных фирм как Snecma, Rolls Royce, Boeing, Pratt & Whitney, Goodrich.

Это стало возможным благодаря высокому качеству производимой продукции, высокотехнологичным процессам производства, использованию современного оборудования и методов производства.

Доминирующим показателем рентабельности предприятия является себестоимость выпускаемой продукции. И снижение себестоимости с постоянно растущим качеством - основная и постоянная задача предприятия. Составляющей себестоимости продукции являются технологические операции контроля продукции, которые на нашем предприятии прежде всего надежны и чувствительны.

Известно, что пьзоэффект лежит в основе ультразвукового контроля.

На нашем предприятии ультразвуковой контроль широко применяют для стопроцентного контроля изделий механических, термических, литейных цехов, т.е. тех изделий, которые благодаря сложности своей конфигурации исключают другие виды дефектоскопии (рентгеновский, люминесцентный).

Ультразвуковой контроль основан на способности энергии ультразвуковых колебаний распространяться с малыми потерями в однородной упругой среде и отражаться от нарушений сплошности в этой среде. Существуют два основных метода ультразукового контроля -- метод сквозного прозвучивания и метод отражения. Ультразвуковой луч вводится в образец, и индикатор измеряет интенсивность колебаний, прошедших через образец или отраженных от неоднородностей, расположенных внутри образца. Дефект выявляется либо по уменьшению прошедшей через образец энергии, либо по энергии, отраженной от дефекта. Осуществляется ультразвуковая дефектоскопия при помощи дефектоскопов.

Дефектоскоп (от лат. «дефект» - недостаток и греч. «скопео» - «смотрю») - устройство, позволяющее обнаружить дефекты в изделиях из различных металлических и неметаллических материалов без их разрушения. Нет ли в изделии каких-нибудь трещин, раковин в глубине или других дефектов, которые могут привести к аварии, - все это выяснит дефектоскоп. А ведь даже незначительная трещина, не видимая невооруженным глазом, может привести к разрушению изделия.

Рассмотрим физический аспект работы ультразвукового дефектоскопа - УЗД.

Главный элемент такого прибора - кварцевая пластинка. Когда на нее падает отраженная дефектом звуковая волна, кварц сжимается и растягивается с частотой колебаний звуковой волны и на его гранях возникает переменное электрическое напряжение. Это - следствие прямого пьезоэлектрического эффекта; в результате под действием механического напряжения на поверхности кварца и некоторых других диэлектриков возникает электрический заряд в результате их поляризации.

Если же на обкладки кварцевой пластины подать импульс переменного напряжения, то кварцевая пластина начинает колебаться с частотой подаваемого напряжения и становится источником акустических колебаний той же частоты наблюдают обратный пьезоэлектрический эффект.

Пьезоэлектрический эффект присущ только кристаллам, элементарные ячейки которых не имеют центра симметрии. Это ионные кристаллы, состоящие как бы из двух или нескольких «вдвинутых» одна в другую простых решеток, каждая из которых построена из ионов одного знака - либо положительных, либо отрицательных. При деформации кристалла эти простые решетки сдвигаются относительно друг друга. При этом изменяется электрический момент кристалла: на его гранях появляется электрическое напряжение. Поляризация пьезоэлектрика в электрическом поле приводит к его деформации - обратному пьезоэлектрическому эффекту.

Рисунок 9 Схема УЗД

Рассмотрим схему УЗД. От генератора на кварцевую пластинку (1) поступает высокочастотный импульс (2). Кварцевая пластинка начинает колебаться и излучает ультразвуковые волны в объем испытываемой металлической детали.

Отражаясь от дефекта, например трещины, ультразвук возвращается на пластинку и превращается в электрические колебания (3), поступающие на осциллограф (5). По расстоянию между прямым и отраженным импульсами можно определить глубину залегания дефекта (4).

Лаборатория ультразвукового контроля была создана на ВСМПО в 1962 году. Инициатором создания лаборатории неразрушающих методов контроля был Владислав Валентинович Тетюхин. Он привез ультразвуковой дефектоскоп и обучил на нем работать. Лаборатория была признана одной из лучших в авиационной отрасли. Руководил коллективом Арпад Францевич Немет. Здесь работали настоящие специалисты. Например, после долгих мук с датчиками для ультразвукового контроля Кишиневского завода было решено изготавливать их самим. За дело взялся Н.И.Калинин - и сделал! Такой тщательности и аккуратности, скрупулезности в работе, как у Николая Ивановича, не было ни у кого. Вот уж кто был незаменимым специалистом!

Подобные документы

    Характеристика пьезоэлектрического эффекта. Изучение кристаллической структуры эффекта: модельное рассмотрение, деформации кристаллов. Физический механизм обратного пьезоэлектрического эффекта. Свойства пьезоэлектрических кристаллов. Применение эффекта.

    курсовая работа , добавлен 09.12.2010

    Физические основы ультразвука - упругих колебаний, частота которых превышает 20 КГц, распространяющихся в форме продольных волн в различных средах. Явление обратного пьезоэлектрического эффекта. Медицинские области применения ультразвуковых исследований.

    контрольная работа , добавлен 06.01.2015

    Понятие кристаллической (пространственной) решетки. Кристаллическая структура эффекта. Области применения промышленных пьезопленок. Обратный пьезоэлектрический эффект. Использование пьезоэлектрических кристаллов для получения электрической энергии.

    курсовая работа , добавлен 14.04.2014

    Характеристика магнитоупругого эффекта как явления обратного магнитострикции, заключающееся в изменении намагниченности магнетика под действием механических деформаций. Использование данного эффекта для измерения силы, крутящего момента и давления.

    курсовая работа , добавлен 13.12.2010

    Понятие и общая характеристика фотоупругого эффекта и его применение для получения картины распределения напряжения. Основные методы измерения физических величин: параметров светового излучения, давления и ускорения с помощью фотоупругого эффекта.

    курсовая работа , добавлен 13.12.2010

    Понятие потенциометрического эффекта и его применение в технике. Эквивалентная схема потенциометрического устройства. Измерение физических величин на основе потенциометрического эффекта. Датчики, построенные на основании потенциометрического эффекта.

    контрольная работа , добавлен 18.12.2010

    Объяснение эффекта Холла с помощью электронной теории. Эффект Холла в ферромагнетиках и полупроводниках. Датчик ЭДС Холла. Угол Холла. Постоянная Холла. Измерение эффекта Холла. Эффект Холла при примесной и собственной проводимости.

    курсовая работа , добавлен 06.02.2007

    Особенности и принципы осуществления позисторного эффекта в сегнетоэлектриках. Модели Хейванга и Джонкера. Технология и основные этапы получения позисторов, сферы их практического применения, экспериментальные исследования соответствующего эффекта.

    курсовая работа , добавлен 21.12.2015

    Общая характеристика и сущность пьезорезонансного эффекта. Пьезорезонансные датчики и сенсоры. Способ регистрации ионизирующих излучений. Определение аммиака в воздухе. Погрешности, ограничивающие точность измерений на основе данного физического эффекта.

    курсовая работа , добавлен 26.03.2012

    Эффект дальнодействия при ионном и фотонном облучении. Метод микротвердости как способ регистрации эффекта дальнодействия. Биологическое действие электромагнитных волн миллиметрового диапазона (КВЧ). Эффект дальнодействия в системе кремниевый диод.

Пьезоэлектрический эффект (пьезоэффект) состоит в том, что при механических деформации некоторых кристаллов в определённых направлениях на их гранях появляются электрические заряды противоположных знаков. Пьезоэффект наблюдается в кварце, турмалине, сегнетовой соли, титанате бария, цинковой обманке и других веществах. Пьезоэлектрический эффект в кварце происходит вдоль электрических осей X 1 , X 2 , X 3 кристалла, перпендикулярных к его оптической оси Z. Обращение направления деформации кристалла изменяет знаки зарядов на поверхностях на противоположные. Обратный пьезоэлектрический эффект заключается в изменении линейных размеров некоторых кристаллов под действием электрического поля. Изменение направления электрического поля вызывает изменение характера деформаций на противоположный. Этот эффект имеет большое значение для получения ультразвука.

Пьезоэлектрики - это такие кристаллы, в которых под влиянием однородной деформации возникают дипольный момент, а значит, и электрическое поле, пропорциональные деформации. Наличие пьезоэлектрических свойств тесно связано с симметрией кристалла.

Пьезоэлектрики были открыты еще во второй половине XIX века, но нашли свое применение только в годы Первой мировой войны, когда на их основе были разработаны сонары (от англ. so na andr -- звуковая навигация и определение дальности) для обнаружения подводных лодок. Успешная реализация этого проекта привела к новым применениям пьезоэлектриков. Так были созданы головки для патефонов -- первых звукопроигрывающих устройств, пьезоэлектрические зажигалки, кварцевые часы и микрофоны.

Существуют и не совсем обычные применения пьезоэлектриков. Например, в Европе есть несколько ночных клубов, в танцпол которых встроены пьезоэлектрические генераторы, преобразующие танцевальные вибрации в электричество, которого достаточно для питания осветительных ламп, так как каждый танцор генерирует 5-10 Ватт мощности (см. видеоролик Sustainable Dance Club). Подобная технология применяется ив одном из фитнес-залов Гонконга, где часто проходят тренировки по шейпингу, боксу и бодибилдингу. Уже создано несколько так называемых «эко-клубов», обеспечивающих себя электричеством на 60% за счет пьезоэлектриков, вмонтированных в пол и в барную стойку. Еще дальше пошли в Израиле. В январе 2009 года там стартует пробный стометровый участок дороги со встроенными под асфальт пьезокристаллами. Израильские инженеры из фирмы Innowattech планируют получить до 40 киловатт мощности при четырехполосном движении.

Следует отметить, что пьезоэлектрический эффект, первоначально обнаруженный в природных материалах, таких как кварц, турмалин, Сегнетова соль и т. д., довольно слабый. По этой причине были синтезированы поликристаллические сегнетоэлектрические керамические материалы с улучшенными свойствами, такие как титанат бария BaTiO 3 и цирконат-титанат свинца PZT (аббревиатура формулы PbO 3 0 < x < 1), см. рис. 1.

пьезоэлектрик деформация кристалл

Рис. 1. Кристаллическая решетка PZT: (1) до и (2) после установления полярности

В PZT-кристалле отрицательные и положительные электрические заряды разделены, но при этом они распределены в объеме кристалла симметрично, что делает его электрически нейтральным. Чтобы подобная керамика стала пьезоэлектриком, необходимо «отрегулировать» полярность зарядов в кристаллической решетке. Для этого сквозь нагреваемую керамику пропускают сильное электрическое поле (> 2000 В/мм), которое приводит к нарушению симметрии в кристалле.

В пьезокристаллах заряды разных знаков формируют электрический диполь. Несколько близлежащих диполей формируют так называемые домены Вейса (Weiss domains). До установления полярности домены ориентированы произвольным образом. Под действием электрического поля и высокой температуры кристалл расширяется в направлении поля и сжимается по перпендикулярной оси. Это приводит к выстраиванию диполей вдоль приложенного электрического поля.

После выключения поля и остывания пьезокерамика обладает остаточной поляризацией. Если к кристаллу с отрегулированной полярностью приложить электрическое поле, домены Вейса начинают выравниваться вдоль поля, причем степень выравнивания зависит от приложенного электрического напряжения. В результате возникает изменение размеров пьезоэлектрического материала.

При механическом давлении симметрия распределения зарядов нарушается, приводя к разности потенциалов на поверхностях кристалла. Например, кварц объемом 1 см 3 при приложении силы 2 кН может произвести напряжение до 12500 В.

При помещении диэлектрика во внешнее электрическое поле на заряды его молекул действуют силы, которые деформируют диэлектрик, создают внутренние механические напряжения. Деформация диэлектрика оказывается пропорциональной квадрату напряженности электрического поля. Это явление получило название "электрострикция". Электрострикция обусловлена поляризацией диэлектриков в электрическом поле и наблюдается у твердых, жидких и газообразных диэлектриков. Электрострикцию следует отличать от так называемого обратного пьезоэффекта. При обратном пьезоэффекте деформация диэлектрика пропорциональна напряженности электрического поля.

В изотропных средах, в том числе в газах и жидкостях, электрострикция наблюдается как изменение плотности под действием электрического поля.

В анизотропных кристаллах электрострикцию можно описать зависимостью между двумя тензорами 2-го ранга - тензором квадрата напряженности электрического поля и тензором деформации. Рассмотрение электрострикции в таких кристаллах выходит за рамки данного курса.

Деформация диэлектрика в однородном внешнем электрическом поле может быть вызвана переориентацией диполей (молекул) и изменением электрического дипольного момента молекул, изменением взаимодействия между ними. В неоднородном внешнем электрическом поле диполи (молекулы) диэлектрика втягиваются (или выталкиваются) в область более сильного поля. Следовательно, на закрепленный диэлектрик будут действовать силы, вызывающие деформацию диэлектрика, зависящую от степени неоднородности электрического поля.

В большинстве диэлектриков поляризация появляется и исчезает с появлением и исчезновением внешнего электрического поля.

Однако некоторые кристаллические диэлектрики, названные (по наиболее яркому представителю сегнетовой соли) сегнетоэлектриками, обладают рядом специфических свойств, которые позволяют их выделить в особую группу.

К сегнетоэлектрикам относятся диэлектрики, обладающие в определенном интервале температур спонтанной (самопроизвольной) поляризованностью даже в отсутствие внешнего электрического поля.

электрического поля. Возникшее электрическое поле доменов поддерживает ориентацию дипольных моментов доменов даже после прекращения внешнего электрического поля (рис. 3.11).

Основными свойствами сегнетоэлектриков являются:

а) диэлектрическая проницаемость их гораздо больше единицы (e>>1);


б) диэлектрическая проницаемость сегнетоэлектриков зависит от напряженности внешнего электрического поля (рис. 3.12);



в) во внешнем электрическом поле сегнетоэлектрики поляризуются до насыщения, т. е. до такого состояния, при котором дальнейшее изменение напряженности электрического поля не изменяет вектор поляризации (рис.3.13);

г) во внешнем циклически изменяющемся электрическом поле им присуще явление гистерезиса, сложная зависимость вектора поляризации от напряженности электрического поля. Изменение вектора поляризации запаздывает по отношению к изменению напряженности электрического поля (рис. 3.14);

д) по своему строению сегнетоэлектрики представляют скопление областей спонтанной поляризации (доменов), электрические дипольные моменты которых имеют хаотические ориентации вектора P (рис.3.10, 3.11);

е) при нагревании сегнетоэлектриков до определенной температуры Т к, характерной для каждого сегнетоэлектрика, они теряют все свои специфические свойства и превращаются в обычные полярные диэлектрики. Точка фазового перехода из состояния сегнетоэлектрика в состояние полярного диэлектрика называется точкой Кюри, а соответствующая ей температура Т к - температурой Кюри. В некоторых случаях имеются две точки Кюри - сегнетоэлектрические свойства исчезают также и при понижении температуры. Сегнетоэлектриков с двумя точками Кюри сравнительно немного. Большинство имеет лишь верхнюю точку, называемую просто точкой Кюри.

При переходе диэлектрика из сегнетоэлектрического состояния в состояние полярного диэлектрика диэлектрическая проницаемость изменяется непрерывно от значения, соответствующего сегнетоэлектрическому состоянию, до значения, соответствующего состоянию полярного диэлектрика.

Закон изменения диэлектрической восприимчивости c вблизи температуры Кюри имеет вид

, (3.28)

где A – некоторая константа;



T o – температура Кюри – Вейса, близкая к температуре Т к (в большинстве случаев вместо Т o используют Т к, что не вносит сколько-нибудь существенных погрешностей в c для температур, отличных от Т к). Закон, выражаемый формулой (3.28), называется законом Кюри-Вейса.

У кристаллов диэлектрические свойства неодинаковы по различным направлениям, и поэтому их диэлектрическая восприимчивость характеризуется не скалярной диэлектрической восприимчивостью c, а тензором диэлектрической восприимчивости c ij . Однако зависимость компонент тензора от температуры имеет тот же характер.

Помимо сегнетоэлектриков имеются многочисленные кристаллы, на поверхности которых при деформациях возникают электрические заряды. Такие кристаллы называются пьезоэлектриками. Возникающие при деформации поверхностные заряды имеют различные знаки на различных частях поверхности. К числу пьезоэлектриков относят кварц, турмалин, сегнетовую соль и многие другие.

Пьезоэлектрическими свойствами обладают только ионные кристаллы. Под действием внешних сил кристаллическая подрешетка из положительных ионов деформируется иначе, чем кристаллическая подрешетка из отрицательных ионов. В результате происходит относительное смещение положительных и отрицательных ионов, приводящее к возникновению поляризации кристалла и поверхностных зарядов. Поляризованность в первом приближении прямо пропорциональна деформации, а деформация кристалла, в свою очередь, прямо пропорциональна силе. Следовательно, поляризованность прямо пропорциональна приложенной силе. Между разноименно заряженными гранями деформированного диэлектрика возникает разность потенциалов, которую можно измерить, а по ее значению сделать заключение о величине деформаций и приложенных силах, что находит многочисленные практические применения. Например, имеются пьезоэлектрические датчики для измерения быстропеременных давлений. Известны пьезоэлектрические микрофоны, пьезоэлектрические датчики в автоматике и телемеханике и т.д.

Помимо прямого пьезоэффекта в пьезоэлектриках существует обратный пьезоэффект. Он состоит в том, что во внешнем электрическом поле пьезоэлектрик деформируется. Его существование следует из наличия прямого эффекта и закона сохранения энергии. При деформировании пьезоэлектрика работа затрачивается на образование энергии упругой деформации и энергии возникающего при этом в результате пьезоэффекта электрического поля. Следовательно, при деформировании пьезоэлектрика необходимо преодолевать дополнительную силу, кроме силы упругости кристалла, которая препятствует деформации и является фактором, обусловливающим обратный пьезоэффект. Чтобы компенсировать дополнительную силу, надо приложить внешнее электрическое поле, противоположное тому, которое возникает в пьезоэффекте. Таким образом, для получения некоторой деформации пьезоэлектрика под влиянием внешнего электрического поля необходимо, чтобы оно было равно, но противоположно направлено тому полю, которое при данной деформации возникает в результате прямого пьезоэлектрического эффекта. Механизм обратного пьезоэлектрического эффекта аналогичен механизму прямого пьезоэффекта. Под действием внешнего электрического поля кристаллические подрешетки положительных и отрицательных ионов деформируются различным образом, что и приводит к деформации кристалла.

Обратный пьезоэлектрический эффект также имеет многочисленные практические применения, в частности широкое применение получили кварцевые излучатели ультразвука.

У некоторых пьезоэлектриков подрешетка положительных ионов оказывается смещенной относительно подрешетки отрицательных ионов в состоянии термодинамического равновесия, в результате чего такие кристаллы оказываются поляризованными при отсутствии внешнего электрического поля. Их называют пироэлектриками.

Обычно наличие спонтанной поляризации маскируется свободными поверхностными зарядами, появляющимися на поверхности кристалла из окружающей среды под действием электрического поля, связанного со спонтанной поляризацией. Данный процесс происходит до тех пор, пока электрическое поле не будет полностью нейтрализовано. Однако при изменении температуры образца, например при нагревании, происходит смещение ионных подрешеток друг относительно друга, в результате чего изменяется спонтанная поляризованность и на поверхности кристалла появляются электрические заряды. Возникновение этих зарядов называется прямым пироэлектрическим эффектом.

Всякий пироэлектрик является пьезоэлектриком, но не всякий пьезоэлектрик является пироэлектриком. Это связано с тем, что у пироэлектрика имеется выделенное направление, вдоль которого существует спонтанная поляризация, а у пьезоэлектрика такого выделенного направления нет.

Наблюдается также и обратный пироэлектрический эффект: изменение электрического поля в адиабатно изолированном пироэлектрике сопровождается изменением его температуры. Необходимость его существования может быть доказана на основе термодинамического анализа процесса и продемонстрирована экспериментами. Обратный пироэлектрический эффект иногда называют электрокалорическим эффектом.

При электрокалорическом эффекте в пироэлектриках изменение температуры пропорционально изменению напряженности электрического поля, в других веществах наблюдается лишь меньший по величине квадратичный электрокалорический эффект.

Существуют диэлектрики, которые длительно время сохраняют поляризованное состояние после снятия внешнего воздействия, вызвавшего поляризацию, и создающие электрическое поле в окружающем пространстве (электрические аналоги постоянных магнитов). Такие диэлектрики получили название "электреты".

Если вещество, молекулы которого обладают дипольным моментом, расплавить и поместить в сильное электрическое поле, то его молекулы частично выстроятся по направлению поля. При охлаждении расплава в электрическом поле и последующем выключении поля в затвердевшем веществе поворот молекул затруднен, и они длительное время будут сохранять преимущественную ориентацию.

Первый электрет был таким методом изготовлен в 1922 г. японским физиком Ёгучи.

При изготовлении электретов в диэлектрик могут переходить носители заряда из электродов или межэлектродного пространства. Носители могут быть созданы и искусственно, например облучением электронным пучком.

Стабильные электреты получают различными методами:

· нагревания, а затем охлаждения в сильном электрическом поле (термоэлектреты);

· освещения в сильном электрическом поле (фотоэлектреты);

· облучения, радиоактивного излучения (радиоэлектреты);

· поляризации в сильном электрическом поле без нагревания (электроэлектреты) или в магнитном поле (магнетоэлектреты);

· при застывании органических растворов в электрическом поле (криоэлектреты);

· механической деформации полимеров (механоэлектреты);

· трения (трибоэлектреты);

· действием поля коронного разряда (короноэлектреты).

Все электреты имеют стабильный поверхностный заряд.

Электреты применяют как источники постоянного электрического поля (электретные микрофоны и телефоны, вибродатчики, генераторы слабых переменных сигналов, электрометры, электростатические вольтметры и др.), а также как чувствительные датчики в устройствах дозиметрии, электрической памяти; для изготовления барометров, гигрометров и газовых фильтров, пьезодатчиков и др. Фотоэлектреты применяются в электрофотографии.

Сегнетоэлектрики

.

Активные диэлектрики

Это органические и неорганические материалы, свойствами которых можно управлять с помощью внешних энергетических воздействий и использовать эти воздействия для создания функциональных элементов электроники.

К ним относятся сегнето-, пьезо-, пиро- электрики, электреты, материалы квантовой электроники, жидкокристаллические, электро – магнито – и акустооптические материалы и др.

Резкой границы между пассивными и активными диэлектриками не существует. Один и тот же материал может выполнять пассивные (изолятор, подложка, конденсатор) и активные функции преобразующего элемента. Требования к активным диэлектрикам противоположны: нестабильность свойств, а наиболее сильное изменение какого-либо свойства при внешнем воздействии.

Активные диэлектрики часто классифицируют по роду физических эффектов, которые можно использовать для управления свойствами. Однако, один и тот же материал может проявлять чувствительность к различным видам энергетических воздействий. Наиболее универсальны – сегнетоэлектрики (они же пьезо-, пироэлектрики, нелинейнооптические материалы и т.д.)

Сгруппируем активные диэлектрики по важнейшим для них свойствам или их специфике.

Это вещества, обладающие спонтанной поляризацией, направление которой может быть изменено с помощью внешнего электрического поля.

В отсутствии электрического поля сегнетоэлектрики имеют доменную структуру с различным направлением электрических моментов доменов. Суммарная поляризация может быть равна 0. Внешнее электрическое поле изменяет направление электрических моментов, что создает эффект сильной поляризации. Отсюда e может вырасти до сотен тысяч. Следствием доменного строения сегнетоэлектриков является нелинейная зависимость их электрической индукции от напряжения электрического поля и наличием диэлектрического гистерезиса (из-за необратимого смещения доменных границ).

Точка В - все домены ориентированы по полю. До точки А обратимое изменение доменных границ, далее АВ – необратимое

При снятии напряженности поля индукция не понизится до «0», а примет некоторое значение. При изменении полярности поля быстро снизится и изменит свое направление. При повышении температуры доменная структура распадается. Температура фазового перехода называется сегнетоэлектрической точкой Кюри. В точке Кюри e максимальна. Для BaTiO 3 Т к =120 о С.

Существует несколько сотен соединений со свойствами сегнетоэлектриков – это могут быть ионные и дипольные кристаллы. Температура точки Кюри изменяется от 15К (Pb 2 Nb 2 O 4) до 1483К (LiNbO 3).

Ионные: BaTiO 3 , PbTiO 3 , KNbO 3 , LiTaO 3 .

Дипольные: сегнетоваясоль (NaKC 4 H 4 O 6 4H 2 O), KH 2 PO 4 , NaNo 2 .

Применение сегнетоэлектриков:

1. изготовление малогабаритных конденсаторов с большой удельной емкостью;

2. изготовление диэлектрических усилителей, модуляторов;

3. в качестве ячеек памяти в вычислительной технике;

4. изготовление пьезоэлектрических и пироэлектрических преобразователей.

Для изготовления конденсаторов используются сегнетокерамические материалы (твердые растворы, смеси кристаллических фаз), которые не имеют сильных температурных зависимостей:

Материал Т-900 – твердый раствор SrTiO 3 и Bi 4 Ti 3 O 12 . Т к =-140 о С; e 20 о =900

Материал СМ-1 - BaTiO 3 +ZrO 2 +Bi 2 O 3 . e 20 о =3000 – используют для малогабаритных конденсаторов.

Материал Т-9000 – твердый раствор BaTiO 3 – BaZrO 3 e 20 о =8000 – используют для высоковольтных конденсаторов.

У материалов для варикондов (нелинейных конденсаторов), применяемых для управления параметрами электрических цепей, e изменяется от 4 до 50 раз (твердые растворы Ba(Ti, Sn)O 3 , Pb(Ti, Zr,Sn)O 3).

Материалы для ячеек памяти – сегнетоэлектрики с прямоугольной петлей гистерезиса. В первую очередь это триглицинсульфат.

При Е = 0, есть два устойчивых состояния. Одно используется для хранения «1», а другое «0». Считывание информации может проводиться без ее разрушения: оптическим методом или измерением сопротивления полупроводниковой пленки, нанесенной на сегнетоэлектрик. Время переключения ячейки несколько мкс (меньше, чем в монокристаллах).

Электрооптические кристаллы – изменяют показатель преломления среды под влиянием внешнего электрического поля. Если n ~ Е, то электрооптический эффект линейный или эффект Поккельса, если n 2 ~Е – квадратичный или эффект Керра.

Электрооптический эффект используется для модуляции лазерного излучения. Электрооптические модуляторы света создаются на базе LiNbO 3 , KH 2 PO 4 , ТР Pb(Ti,Zr)O 3 .

Материалы нелинейной оптики – используют эффект нелинейной поляризации среды под действием мощных световых пучков, создаваемых лазерами (n зависит от световой волны). Это позволяет преобразовывать частоты оптических сигналов (ИК – излучение переводить в видимое излучение). Эффективны KH 2 PO 4 , LiNbO 3 , LiIO 3 и др.

ТЕХНИКА УЛЬТРААКУСТИКИ

Имеются многочисленные кристаллы, на поверхности которых при деформациях возникают электрические заряды. Такие кристаллы называются пьезоэлектриками. Возникающие при деформации поверхностные заряды имеют различные знаки на различных частях поверхности. К числу пьезоэлектриков относят кварц, турмалин, сегнетовую соль и многие другие.

Пьезоэлектрическими свойствами обладают только ионные кристаллы. Под действием внешних сил кристаллическая подрешетка из положительных ионов деформируется иначе, чем кристаллическая подрешетка из отрицательных ионов. В результате происходит относительное смещение положительных и отрицательных ионов, приводящее к возникновению поляризации кристалла и поверхностных зарядов. Поляризованность в первом приближении прямо пропорциональна деформации, а деформация кристалла, в свою очередь, прямо пропорциональна силе. Следовательно, поляризованность прямо пропорциональна приложенной силе.


На рис. 6.1 качественно поясняется возникновение прямого и обратного пьезоэлектрического эффекта в кварце.

Между разноименно заряженными гранями деформированного диэлектрика возникает разность потенциалов, которую можно измерить, а по ее значению сделать заключение о величине деформаций и приложенных силах, что находит многочисленные практические применения. Например, имеются пьезоэлектрические датчики для измерения быстропеременных давлений. Известны пьезоэлектрические микрофоны, пьезоэлектрические датчики в автоматике и телемеханике и т.д.

Прямой пьезоэффект

Помимо прямого пьезоэффекта в пьезоэлектриках существует обратный пьезоэффект. Он состоит в том, что во внешнем электрическом поле пьезоэлектрик деформируется. Его существование следует из наличия прямого эффекта и закона сохранения энергии. При деформировании пьезоэлектрика работа затрачивается на образование энергии упругой деформации и энергии возникающего при этом в результате пьезоэффекта электрического поля. Следовательно, при деформировании пьезоэлектрика необходимо преодолевать дополнительную силу, кроме силы упругости кристалла, которая препятствует деформации и является фактором, обусловливающим обратный пьезоэффект. Чтобы компенсировать дополнительную силу, надо приложить внешнее электрическое поле, противоположное тому, которое возникает в пьезоэффекте. Таким образом, для получения некоторой деформации пьезоэлектрика под влиянием внешнего электрического поля необходимо, чтобы оно было равно, но противоположно направлено тому полю, которое при данной деформации возникает в результате прямого пьезоэлектрического эффекта. Механизм обратного пьезоэлектрического эффекта аналогичен механизму прямого пьезоэффекта. Под действием внешнего электрического поля кристаллические подрешетки положительных и отрицательных ионов деформируются различным образом, что и приводит к деформации кристалла.



Обратный пьезоэлектрический эффект также имеет многочисленные практические применения, в частности широкое применение получили кварцевые излучатели ультразвука.

Обратный пьезоэффект:

Так, для кварцевой пластинки (Х-срез), совершающей колебания по толщине, резонансная частота (основная гармоника) может быть получена по формуле

где – толщина пластинки, выраженная в см.

1. Пьезоэлектрический эффект.

В некоторых кристаллах поляризация может возникнуть и без внешнего поля, если кристалл подвергается механическим деформациям. Это явление, открытое в 1880 г. Пьером и Жаком Кюри, получило название пьезоэлектрического эффекта.

Чтобы обнаружить пьезоэлектрические заряды, на грани кристаллической пластинки накладывают металлические обкладки. При разомкнутых обкладках между ними при деформации появляется разность потенциалов. При замкнутых обкладках на них образуются индуцированные заряды, равные по величине поляризационным зарядам, но противоположные им по знаку, и в цепи, соединяющей обкладки, в процессе деформации возникает ток. Рассмотрим основные особенности пьезоэлектрического эффекта на примере кварца. Кристаллы кварца SiO2 существуют в различных кристаллографических модификациях. Интересующие нас кристаллы (a-кварц) принадлежат к так называемой тригональной кристаллографической системе и обычно имеют форму, показанную на рис.1. Они напоминают шестигранную призму, ограниченную двумя пирамидами, однако имеют еще ряд дополнительных граней. Такие кристаллы характеризуются четырьмя кристаллическими осями, определяющими важные направления внутри кристалла.

Одна из этих осей - Z соединяет вершины пирамид. Три другие X1, Х2, Х3 перпендикулярны к оси Z и соединяют противолежащие ребра шестигранной призмы. Направление, определяемое осью Z, пьезоэлектрически неактивно: при сжатии или растяжении по этому направлению никакой поляризации не происходит. Напротив, при сжатии или растяжении в любом направлении, перпендикулярном к оси Z, возникает электрическая поляризация. Ось Z называется оптической осью кристалла, а оси X1, Х2, Х3 - электрическими или пьезоэлектрическими осями.

Рассмотрим пластинку кварца, вырезанную перпендикулярно к одной из пьезоэлектрических осей X. Ось, перпендикулярную к Z и X, обозначим через Y (рис. 2). Тогда оказывается, что при растяжении пластинки вдоль оси Х на перпендикулярных к ней гранях АВСD и ЕFGН появляются разноименные поляризационные заряды. Такой пьезоэлектрический эффект называется продольным. Если изменить знак деформации, т. е. перейти от растяжения к сжатию, то и знаки поляризационных зарядов изменятся на обратные.

Рис. 1. Кристалл кварца.

Возникновение поляризационных зарядов определенных знаков при данном типе деформации (растяжение или соответственно сжатие) показывает, что концы осей Х неравноправны, и осям Х можно приписать определенные направления (что отмечено на рис. 1 стрелками). Это значит, что при данной деформации знак заряда зависит от того, направлена ли ось Х по внешней нормали к грани или по внутренней. Такие оси с неравноправными концами получили название полярных осей. В отличие от полярных осей Х1, Х2, Х3, концы оси Z совершенно равноправны и она является неполярной осью.

Рис. 2. Кварцевая пластинка, вырезанная перпендикулярно к пьезоэлектрической оси.

Неравноправность концов полярной оси проявляется, конечно, не только в пьезоэлектрическом эффекте, но и в других явлениях. Так, например, скорость химического травления граней, расположенных у разных концов полярной оси, оказывается различной и получающиеся при этом фигуры травления отличаются друг от друга.

Наряду с продольным пьезоэлектрическим эффектом существует также поперечный пьезоэлектрический эффект. Он заключается в том, что при сжатии или растяжении вдоль оси Y возникает поляризация вдоль оси Х и на тех же гранях АВСD и ЕFGН появляются поляризационные заряды. При этом оказывается, что знаки зарядов на каждой грани при сжатии вдоль Y (в поперечном эффекте) такие же, как при растяжении вдоль Х (в продольном эффекте).

Пьезоэлектрический эффект объясняется следующим образом В ионных кристаллах вследствие несовпадения центров положительных и отрицательных ионов имеется электрический момент и в отсутствие внешнего электрического поля. Однако эта поляризация обычно не проявляется, так как она компенсируется зарядами на поверхности. При деформации кристалла положительные и отрицательные ионы решетки смещаются друг относительно друга, и поэтому, вообще говоря, изменяется электрический момент кристалла. Это изменение электрического момента и проявляется в пьезоэлектрическом эффекте.

Рис. 3 качественно поясняет возникновение пьезоэлектрического эффекта в кварце. Здесь схематически показаны проекции положительных ионов Si (заштрихованные кружки) и отрицательных ионов О (светлые кружки) в плоскости, перпендикулярной к оптической оси Z. Этот рисунок не соответствует фактической конфигурации ионов в элементарной ячейке кварца, в которой ионы не лежат в одной плоскости, а их число больше показанного. Он, однако, правильно передает симметрию взаимного расположения ионов, что уже достаточно для качественного объяснения.

Рис. 3, а) соответствует недеформированному кристаллу. На грани A, перпендикулярной к оси X1, имеются выступающие положительные заряды, а на параллельной ей грани В - выступающие отрицательные заряды. При сжатии вдоль оси X1 (рис. 3, б) элементарная ячейка деформируется. При этом положительный ион 1 и отрицательный ион 2 «вдавливаются» внутрь ячейки, отчего выступающие заряды (положительный на плоскости А и отрицательный на плоскости В) уменьшаются, что эквивалентно появлению отрицательного заряда на плоскости А и положительного заряда на плоскости В. При растяжении вдоль оси X1 имеет место обратное (рис. 3, в): ионы 1 и 2 «выталкиваются» из ячейки. Поэтому на грани А возникает дополнительный положительный заряд, а на грани В - отрицательный заряд.

в)

Рис. 3. К объяснению пьезоэлектрического эффекта.

Расчеты в теории твердого тела в согласии с опытом показывают, что пьезоэлектрический эффект может существовать только в таких кристаллах, в которых элементарная ячейка не имеет центра симметрии. Так, например, элементарная ячейка кристаллов CsCl (рис. 4) имеет центр симметрии и эти кристаллы не обнаруживают пьезоэлектрических свойств. Расположение же ионов в ячейке кварца таково, что в нем центр симметрии отсутствует, и поэтому в нем возможен пьезоэлектрический эффект.

Рис. 4. Элементарная ячейка кристалла хлористого цезия CsCl.

Величина вектора поляризации Р (и пропорциональная ей поверхностная плотность пьезоэлектрических зарядов о") в определенном интервале изменений пропорциональна величине механических деформаций. Обозначим через и деформацию одностороннего растяжения вдоль оси X:

где d - толщина пластинки, а Dd - ее изменение при деформации. Тогда, например, для продольного эффекта имеем:

Величина b называется пьезоэлектрическим модулем. Знак b может быть как положительным, так и отрицательным. Так как и безразмерная величина, то b измеряется в тех же единицах, что и Р, т.е. в Кл/м2. Величина поверхностной плотности пьезоэлектрических зарядов на гранях, перпендикулярных к оси X, равна s"=Рх

Вследствие возникновения пьезоэлектрической поляризации при деформации изменяется и электрическое смещение D внутри кристалла. В этом случае в общем определении смещения под Р нужно понимать сумму Рe+Pu, где Pe oбусловлено электрическим полем, а Рu - деформацией. В общем случае направления Е, Pe и Рu не совпадают и выражение для D получается сложным. Однако для некоторых направлений, совпадающих с осями высокой симметрии, направления указанных векторов оказываются одинаковыми. Тогда для величины смещения можно написать:

где Е - напряженность электрического поля внутри кристалла, а e - диэлектрическая проницаемость при постоянной деформации. Соотношение справедливо, например, при деформации одностороннего растяжения (сжатия) вдоль одной из электрических осей X. Оно является одним из двух основных соотношений в теории пьезоэлектричества (второе соотношение приведено).

Пьезоэлектрический эффект возникает не только при деформации одностороннего растяжения, но и при деформациях сдвига.

Пьезоэлектрические свойства наблюдаются, кроме кварца, у большого числа других кристаллов. Гораздо сильнее, чем у кварца, они выражены у сегнетовой соли. Сильными пьезоэлектриками являются кристаллы соединений элементов 2-й и 6-й групп периодической системы (СdS, ZnS), а также многих других химических соединений.

2. Обратный пьезоэлектрический эффект.

Наряду с пьезоэлектрическим эффектом существует и обратное ему явление: в пьезоэлектрических кристаллах возникновение поляризации сопровождается механическими деформациями. Поэтому, если на металлические обкладки, укрепленные на кристалле, подать электрическое напряжение, то кристалл под действием поля поляризуется и деформируется.

Легко видеть, что необходимость существования обратного пьезоэффекта следует из закона сохранения энергии и факта существования прямого эффекта. Рассмотрим пьезоэлектрическую пластинку (рис. 5) и предположим, что мы сжимаем ее внешними силами F. Если бы пьезоэффекта не было, то работа внешних сил равнялась бы потенциальной энергии упруго деформированной пластинки. При наличии пьезоэффекта на пластинке появляются заряды и возникает электрическое поле, которое заключает в себе дополнительную энергию. По закону сохранения энергии отсюда следует, что при сжатии пьезоэлектрической пластинки совершается большая работа, а значит, в ней возникают дополнительные силы F1, противодействующие сжатию. Это и есть силы обратного пьезоэффекта. Из приведенных рассуждений вытекает связь между знаками обоих эффектов. Если в обоих случаях знаки зарядов на гранях одинаковы, то знаки деформаций различны. Если при сжатии пластинки на гранях появляются заряды, указанные на рис. 5, то при создании такой же поляризации внешним полем пластинка будет растягиваться.

Рис.5. Связь прямого и обратного пьезоэлектрических эффектов.

Обратный пьезоэлектрический эффект имеет внешнее сходство с электрострикцией. Однако оба эти явления различны. Пьезоэффект зависит от направления поля и при изменении направления последнего на противоположное изменяет знак. Электрострикция же не зависит от направления поля. Пьезоэффект наблюдается только в некоторых кристаллах, не обладающих центром симметрии. Электрострикция имеет место во всех диэлектриках как твердых, так и жидких.

Если пластинка закреплена и деформироваться не может, то при создании электрического поля в ней появится дополнительное механическое напряжение Его величина s пропорциональна напряженности электрического поля внутри кристалла:

где b - тот же пьезоэлектрический модуль, что и в случае прямого пьезоэффекта. Минус в этой формуле отражает указанное выше соотношение знаков прямого и обратного пьезоэффектов.

Полное механическое напряжение внутри кристалла складывается из напряжения, вызванного деформацией, и напряжения, возникшего под влиянием электрического поля. Оно равно:

Здесь С есть модуль упругости при деформации одностороннего растяжения (модуль Юнга) при постоянном электрическом поле. Формулы (51.2) и (52.2) являются основными соотношениями в теории пьезоэлектричества.

При написании формул мы выбирали u и Е в качестве независимых переменных и считали D и s их функциями. Это, конечно, необязательно, и мы могли бы считать независимыми переменными другую пару величин, одна из которых - механическая, а другая - электрическая. Тогда мы получили бы тоже два линейных соотношения между u, s, Е и D, но с другими коэффициентами. В зависимости от типа рассматриваемых задач удобны различные формы записи основных пьезоэлектрических соотношений.

Так как все пьезоэлектрические кристаллы анизотропны, то постоянные e, С и b зависят от ориентации граней пластинки относительно осей кристалла. Кроме того, они зависят от того, закреплены боковые грани пластинки или свободны (зависят от граничных условий при деформации). Чтобы дать представление о порядке величины этих постоянных мы приведем их значения для кварца в случае, когда пластинка вырезана перпендикулярно оси Х и ее боковые грани свободны:

e=4, 5; С=7, 8 1010 Н/м2; b=0, 18 Кл/м2.

Рассмотрим теперь пример применения основных соотношений (4) и (5) Положим, что кварцевая пластинка, вырезанная, как указано выше, растягивается вдоль оси X, причем обкладки, касающиеся граней, разомкнуты. Так как заряд обкладок до деформации был равен нулю, а кварц является диэлектриком, то и после деформации обкладки будут незаряженными. Согласно определению электрического смещения это значит, что D=0. Тогда из соотношения (4) следует, что при деформации внутри пластинки появится электрическое поле c напряженностью:

Подставляя это выражение в формулу (5), находим для механического напряжения в пластинке:

s=Cu-b(-(b/e0e)u)=C(1+(b2/e0eC))u (7)

Напряжение, как и в отсутствие пьезоэлектрического эффекта, пропорционально деформации. Однако упругие свойства пластинки теперь характеризуются эффективным модулем упругости

С" == С (1 + b2/e0eС). (8)

который больше С. Увеличение упругой жесткости вызвано появлением добавочного напряжения при обратном пьезоэффекте, препятствующего деформации. Влияние пьезоэлектрических свойств кристалла на его механические свойства характеризуется величиной: К2=b2/e0eC (9)

Квадратный корень из этой величины (К) называется константой электромеханической связи Пользуясь приведенными выше значениями e, С и b, находим, что для кварца К2~0.01 Для всех других известных пьезоэлектрических кристаллов К2 оказывает также малым по сравнению с единицей и не превышает 0, 1.

Оценим теперь величину пьезоэлектрического поля. Положим, что к граням кварцевой пластинки, перпендикулярным к оси X, приложено механическое напряжение 1 1055 Н/м2. Тогда, согласно (7), деформация будет равна u=1, 3 10-6. Подставляя это значение в формулу (6), получаем |E|==5900 В/м=59 В/см. При толщине пластинки, скажем, d==0, 5 см напряжение между обкладками будет равно U=Еd~30 В. Мы видим, что пьезоэлектрические поля и напряжения могут быть весьма значительными. Применяя вместо кварца более сильные пьезоэлектрики и используя должным образом выбранные типы деформации, можно получать пьезоэлектрические напряжения, измеряемые многими тысячами вольт.

Пьезоэлектрический эффект (прямой и обратный) широко применяется для устройства различных электромеханических преобразователей. Для этого иногда используют составные пьезоэлементы, предназначенные для осуществления деформаций разного типа.

На рис.6 показан двойной пьезоэлемент (составленный из двух пластинок), работающий на сжатие. Пластинки вырезаны из кристалла таким образом, что они одновременно либо сжимаются, либо растягиваются. Если, наоборот, сжимать или растягивать такой пьезоэлемент внешними силами, то между его обкладками появляется напряжение. Соединение пластинок в этом пьезоэлементе соответствует параллельному соединению конденсаторов.

Рис.6. Двойной пьезоэлемент, работающий на сжатие.

3. Использование пьезоэффекта в науке и технике.

Главной деталью любого оборудования для озвучивания акустического музыкального инструмента является пьезодатчик (Transducer). Эта деталь преобразует механические колебания струн и деки в электрический сигнал.

Аналогичную функцию в электрогитаре выполняет магнитный датчик: сингл или хамбакер. Но физика работы электрогитарного датчика иная - он преобразует изменения магнитного поля, вносимое стальными струнами. Пьезодатчик для акустики работает с любыми струнами, в том числе синтетическими. Пьезодатчик помещают под косточку гитары (пластинку, на которую опираются струны). Это UST-датчик

Есть и другой способ размещения пьезодатчика - его приклеивают на деку гитару (изнутри, ближе к подставке). Сигнал с такого датчика будет слабее, ведь его не прижимают струны, он получает только колебания деки. Однако он имеет больше информации о свойствах корпуса гитары. Этот датчик называется AST (1470).

Совмещение сигналов от UST и AST дает очень сложную и интересную картину и позволяет реалистично озвучить инструменты самого высокого класса. Однако не всегда использование двух датчиков необходимо.

Пьезоэлектрические преобразователи:

Пьезоэлектрики являются обратимыми электромеханическими преобразователями, т. е. способны преобразовывать механическую энергию в электрическую и, наоборот, электрическую энергию в механическую. Преобразователи, основанные на использовании прямого пьезоэффекта, называют преобразователями-генераторами; они имеют механический вход и электрический выход. Преобразователи, основанные на использовании обратного пьезоэффекта, называют преобразователями-двигателями; они имеют электрический вход и механические выходы. Известно множество пьезоэлектрических устройств, основанных на использовании как прямого, так и обратного эффектов. Прямой эффект используется, например, в микрофонах, звукоснимателях, датчиках механических сил, перемещений и ускорений, бытовых зажигалках для газа и др. Обратный эффект послужил основой для создания телефонов, громкоговорителей, ультразвуковых излучателей, реле, двигателей и т. п.

Известны и нашли практическое применение пьезоэлектрические преобразователи - пьезоэлектрические трансформаторы (сокращенно пьезотрансформаторы). Схематически устройство пьезотрансформатора изображено на рисунке, поясняющем, что он представляет собой пьезоэлектрический преобразователь в виде четырехполюсника, имеющего только электрические вход и выход.

Рис. 7 Пьезоэлектрический трансформатор

Действие пьезотрансформатора основано на использовании как прямого, так и обратного пьезоэффектов. Электрическое напряжение, приложенное к входным электродам пьезотрансформатора, в результате обратного пьезоэффекта вызывает деформацию всего объёма пьезоэлектрика и на выходных электродах возникает электрическое (вторичное) напряжение как следствие прямого пьезоэффекта. В пьезотрансформаторе происходит как бы двойное преобразование энергии - электрической в механическую, а затем механической в электрическую. Как и электромагнитный трансформатор, пьезотрансформатор используют для преобразования электрического напряжения. Подбором размеров электродов и их расположения можно получать различные значения коэффициента трансформации. Пьезотрансформаторы обычно используют в резонансном режиме, при котором достигаются большие значения коэффициента трансформации (порядка нескольких сотен). Пьезотрансформаторы используют в высоковольтных источниках вторичного электропитания.

Рассмотрим в общих чертах явления, происходящие в пьезоэлектрике, для двух случаев пьезоэлектрического преобразования энергии.

Пьезоэлемент (ПЭ) - тело из пьезоэлектрика определенных размеров, геометрической формы и ориентации относительно основных кристаллографических осей (или направления поляризации в случае пьезокерамики, имеющее проводящие обкладки (электроды).

Рис. 8 Пьезоэлемент: 1 - пластина из пьезоэлектрика; 2 - электроды из проводящего матариала, наложенные на грани пластины

Таким образом, пьезоэлемент представляет собой электрический конденсатор с твёрдым (кристаллическим или керамическим) диэлектриком. Особенностью такого конденсатора является наличие пьезоэлектрических свойств у диэлектрика, заполняющего пространство между электродами. Ниже будет показано, какое значение имеет наличие пьезоэффекта и каким образом он оказывает влияние на электрические и механические характеристики пьезоэлемента. Если пьезоэлемент используется как электромеханический преобразователь, то его ориентацию выбирают исходя из требований достижения наибольшего эффекта. Внешние силы (как механические, так и электрические), воздействующий на пьезоэлемент, могут быть как распределенными, так и сосредоточенными. Распределенные силы позволяют достичь более эффективного преобразования. Поэтому для более эффективной поляризации объема пьэзоэлектрика используют электроды, . покрывающие всю площадь граней пьезоэлемента, а для создания равномерно распределенного механического напряжения - накладки из упругого материала, хорошо прилегающие к граням пьезоэлемента и преобразующие внешние сосредоточенные силы в распределенные.

Внешняя сила вызывает деформацию пьезоэлемента, его поляризацию и возникновение на электродах противоположных электрических зарядов. Величина электрического заряда или возникающего при этом напряжения может быть измерена соответствующим измерительным прибором, присоединенным к электродам пьезоэлемента. Внешняя сила сообщает пьезоэлементу энергию в виде упругой деформации, которая может быть рассчитана, если известны величины воздействующей силы и жёсткость пьезоэлемента. Одновременно с деформацией пьезоэлемента на его электродах возникает электрическое напряжение. Следовательно, часть энергии, сообщаемой пьезоэлементу внешней силой, оказывается электрической и её величина может быть рассчитана, если известны электрическое напряжение на электродах и ёмкость пьезоэлемента.

Внешняя механическая сила, воздействующая на пьезоэлемент, сообщает последнему энергию W0 в виде энергии упругой деформации и энергии заряда ёмкости пьезоэлемента. Если обозначить энергию упругой деформации пьезоэлемента через Wм, а электрическую энергию заряда его ёмкости через Wэ, то полная энергия W0, сообщенная пьезоэлементу, будет равна их сумме. Как во всяком обратимом преобразователе, при этом возникает обратное действие (пьезоэлектрическая реакция), заключающееся в том, что возникшее вследствие прямого пьезоэффекта электрическое напряжение создаёт (уже в результате обратного пьезоэффекта) механические напряжения и деформации, противодействующие внешним силам. Это проявляется в увеличении жесткости пьезоэлемента. Если электрическое напряжение, возникающее вследствие пьезоэффекта, исключить, например, закоротив электроды пьезоэлемента, то обратного пьезоэлектрического действия наблюдаться не будет, следовательно, должно произойти уменьшение жесткости пьезоэлемента.

Подобные же рассуждения можно сделать и для случая обратного пьезоэффекта, т. е. воздействия на пьезоэлемент внешней электрической силы. При этом внешний источник электрической энергии сообщает пьезоэлементу энергию в виде энергии заряда ёмкости пьезоэлемента и механической энергии его упругой деформации. Здесь также имеет место обратное действие. Если воспрепятствовать деформации жестким зажатием пьезоэлемента, то можно обнаружить изменение его ёмкости. Этот факт легко наблюдается у сильных пьезоэлектриков, для слабых же, таких как кварц, изменение ёмкости невелико (около 1%). К этому выводу легко прийти, приняв во внимание термодинамические соображения. Из теории пьезоэлектричества известно, что упругие коэффициенты пьезоэлектриков зависят от электрических условий, как и их коэффициенты диэлектрических проницаемостей зависят от механических условий. Это естественно, так как пьезоэлектричество по определению предполагает наличие связи между упругими и диэлектрическими свойствами. Поэтому описание пьезоэлектрических свойств материала невозможно без привлечения упругих и диэлектрических коэффициентов с указанием граничных механических и электрических условий.

Более полно пьезоэффект характеризует энергетический коэффициент и, называемый коэффициентом электромеханической связи (ЭМС) и определяемый отношением k = Wэ / W0 = Wм / W0, где W0 - вся приложенная к пьезоэлементу энергия, а Wэ и Wм - преобразованная (электрическая и механическая) энергия. Коэффициент ЭМС оказывается очень полезным для сравнения пьезоэлектриков, пьезоэлектрические, упругие и диэлектрические коэффициенты которых могут сущевенно различаться. Этот коэффициент различен для статического и динамического режимов преобразования, в последнем случае он зависит также от вида и моды колебания. Коэффициент ЭМС, как и пьезоэлектрические модули, зависит от направления воздействующих сил относительно кристаллографических осей кристалла. Он определяет такую существенную характеристику резонатора, как относительная ширина резонансной кривой. Чем больше коэффициент ЭМС, тем больше относительная ширина резонансной кривой. Преобразование энергии пьезоэлектрическим элементом не можт быть полным, поэтому коэффициент ЭМС не бывает больше 1. Для так называемых слабых пьезоэлектриков, к которым принадлежат кварц, коэффициент ЭМС не превышает нескольких процентов, для сильных пьезоэлектриков, таких как сегнетова соль или пьезокерамика, он может достигать 50 ...90%.

Различные сферы применения:

Патент США N3239283. Американские изобретатели Дж.Броз и В.Лаубердорфер разработали конструкцию подшипника, в котором трение уничтожается вибрацией, но для ее создания не требуется специальных механизмов. Втулки подшипника изготовляются из пьезоэлектрического материала. Ток заставляет пьезоэлектрик сжиматься и расширяться, создавая вибрацию, уничтожающую трение.

Установка на реактивных самолетах пьезопреобразователей позволяет экономить почти треть топлива, которое шло на выработку электроэнергии, следовательно, позволяет увеличить дальность полета. Здесь в электроэнергию непосредственно превращаются колебания и вибрация фюзеляжа и крыльев.

Фирма "Филипс" успешно разрабатывает идею пьезоэлектрического привода для механизмов малой мощности. В частности, ею создан светофор, батареи которого заряжаются от шума автомобилей на перекрестке.

Поговаривают о создании звукоизолирующих перегородок многоквартирных домок из пьезоэлектриков. Здесь двойной эффект и поглощение шума, и выработка электроэнергии, скажем, для обогрева квартир.

Пьезоэлектрическая струйная печать. Пьезоэлектрические струйные головки для принтеров были разработаны в семидесятых годах. В большинстве таких принтеров избыточное давление в камере с чернилами создается с помощью диска из пьезоэлектрика, который изменяет свою форму (выгибается) при подведении к нему электрического напряжения. Выгнувшись, диск, который служит одной из стенок камеры с чернилами, уменьшает ее объем. Под действием избыточного давления жидкие чернила вылетают из сопла в виде капли.

Пьезоэлектрический микрофон, сконструированный советскими учёными С. Н. Ржевкиным и А. И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Звуковые волны падают на пьезокристалл микрофона и сжимают его. При помощи пьезокристалла происходит преобразование энергии звуковых волн в слабый электрический ток. Этот небольшой ток затем поступает на усилитель, который делает его достаточно сильным, чтобы обеспечить нормальную работу громкоговорителя. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.

Зажигалка бытовая пьезоэлектрическая ЗП-1 "Толнэ". Зажигалка предназначена для зажигания газа в горелках бытовых газовых приборов. Источником получения искры является пьезоэлемент. Нажатием на клавишу усилие сжатия передается на пьезоэлементы, в результате чего происходит искрообразование между контактами, расположенными внутри металлической насадки, надетой на удлиненный конец пьезозажигалки. Искра, которая поджигает газ, образуется как при нажатии на клавишу, так и при отпускании ее.

Пьезоэлектрические излучатели применяются для генерирования ультразвука с частотами до 50 Мгц. Основным элементом пьезоэлектрического излучателя является пластинка из пьезоэлектрика, совершающая вследствие обратного пьезоэлектрического эффекта вынужденные механические колебания в переменном электрическом поле.

Список литературы

“Электричество” С.Г. Калашников, Москва, 1977г.

“Электротехнические материалы” Ю.В. Корицкий, Москва, 1968г.

“Радиопередающие устройства” Г.А. Зейтленка, Москва, 1969г.

http://www.terralab.ru/299680/?r1=rss&r2=remote;

http://www.b-band.ru/pieza.html;

© 2024 newcity55.ru - Строительный портал - Новый город