Калькулятор онлайн.Нахождение (вычисление) НОД и НОК. Нахождение наименьшего общего кратного, способы, примеры нахождения НОК Как находится нод

Калькулятор онлайн.Нахождение (вычисление) НОД и НОК. Нахождение наименьшего общего кратного, способы, примеры нахождения НОК Как находится нод

В этом уроке мы поговорим о том как вычислять НОД и НОК. Дело в том, что элементарные арифметические вычисления должен уметь делать любой программист, так как алгоритм вычисления можно встретить во многих программах. Тем более вы их уже должны знать, если вы учились в школе 5 классе.

Наибольший общий делитель. НОД.

Для нахождения общего делителя вам нужно знать следующее:

Запомните: наибольший общий делитель (НОД) двух целых чисел – это наибольшее целое число, на которое делятся оба исходных числа без остатка. Однако одно из исходных чисел должно быть большее нуля.
Запомните: если у вас одно из двух чисел ноль, то НОД будет, то число что больше ноля.
Запомните: существует понятие взаимно-простых чисел, у которого нет общих делителей, кроме единицы. К примеру число 5 и 4, НОД этих чисел будет равен 1, так как если 5 разделить на 4 вы не получите целое число без остатка, следовательно НОД=1

Все остальные числа, у которых НОД больше 1, вычисляются по принципу бинарного алгоритма или с помощью алгоритма Евклида. В этой статье мы подробно разберем алгоритм Евклида, который еще называют взаимным вычитанием, поскольку НОД получается при последовательном вычитании меньшего из большего. Используем алгоритм Евклида в нашем примере НОД(12, 30). По алгоритму Евклида нам надо вычесть из большее меньшее, то есть из 30-12-12=6 В числе 30 у нас может поместиться число 12 только два раза, число 12 называют кратным, и остатком останется число 6. Теперь нам надо из числа 30 отнять кратное числа 6, которое у нас получилось, 30-6-6-6-6-6=5 НОД числа 12 и 30 будет равен 6. Так как нам надо найти именно наибольший делитель в нашем случаи 6 больше 5, следовательно НОД(12,30)=6. Как видите ничего сложного, теперь давайте составим блок схему.

Блок-схема «Алгоритм Евклида»

рис.1

Если число a и b равно, НОД этих чисел будет любое из них, так как они могут делиться друг на друга. Если a и b не равны, мы их сравниваем a, если a меньше чем b то их надо поменять местами в a присвоить значение b, в b присвоить значение а и перейти к следующему вычислению описанного ниже. Если a больше чем b то, надо из а вычесть b , результат сохранить в a , и так до тех пор, пока а не станет равно b . Рассмотрим на примере.

Пример НОД(12,30).

  • 12=30 | a==b; //в нашем случаи 12 не равно 30
  • 12<30 | a
  • 30 12 | a==b; b==a; //меняем местами
  • 30-12=18 | a=a-b;//производим вычитание
  • 18=12| a==b;//равно ли а и b
  • 18<12| ab
  • 18-12=6|a=a-b; //производим вычитание
  • 6=12|a==b; //в нашем случаи 6 не равно 12
  • 6<12|a
  • 6 12| a==b; b==a; //меняем местами
  • 12-6=6|a=a-b;//производим вычитание
  • 6=6| a==b; //в нашем случаи 6 равно 6
  • НОД(12,30)=6;

Наименьшее общее кратное(НОК).

НОК-это число которое из двух и более натуральных чисел является наименьшим натуральным числом, которое само делится нацело, и каждое из исходных чисел.

Самый простой и быстрый способ в плане реализации программного кода, это первоначально вычислить НОД двух чисел, затем произведение исходных двух целых чисел a и b разделить на НОД. Посмотрим на примере как это выглядет. Возьмем за пример все те же цифры 12 и 30 как мы помним наибольшее общее кратное равнялось 6. НОД=6 Следовательно по формуле НОК=a*b/НОД. НОК=12*30/6=60 Есть и другие варианты вычисления НОК к примеру каноническое разложение чисел. Рассмотрим пример, первоначально нам надо выяснить какое из чисел больше, потом мы раскладываем числа на кратные 12= 2 *2* 3 , и число 30= 2 * 3 *5 Вычисляем произведение кратных чисел из числа 30, так как оно является наибольшим. В следующей операции, одинаковые цифры вычеркиваются, как это сделал я из большего меньшее, а оставшиеся кратные числа из 12 умножаются друг на друга, у нас осталось только число 2, которое умножается на произведение кратных чисел из 30, в результате вычисления вы и получите НОК. Выглядет это следующим образом НОК=2*3*5*2=60 Хорошо это можно представить в виде столбиков, как это можно видеть из рис. 2.

рис. 2

В целом ничего сложного, главное не запутаться, сейчас мы нарисуем блок схему наименьшего общего кратного (НОК).

Блок схема Наименьшего общего кратного (НОК)

рис 3.

Алгоритм работы программы описан вначале, статьи о НОК.

Но как же быть если нам надо к примеру найти НОД трех и более натуральных чисел, или найти НОК трех или более натуральных чисел. Тут ничего сложного инструкцию по нахождению НОД из 3 чисел и НОК смотрим ниже.

НОД трех чисел:

  • Сравниваем все числа К примеру a
  • Начинаем вычисления с больших чисел к меньшим
  • Вычисляем НОД по аналогии с двумя числами a и b
  • Вычисляем по аналогии чисел НОД(a,b) и с Пример: НОД(a,b,c)=НОД((НОД(a,b)),с);
  • НОД(12,30,60)
  • 12<30<60
  • НОД(60,30)=30
  • НОД(30,12)=6

Точно так же производиться вычисления НОД из четырех чисел из пяти итд. По аналогии с НОД вычисляется и НОК с тремя и более числами. Приведу в пример НОД трех чисел блок схему алгоритма смотрите рис. 4.

Блок схема НОД алгоритма трех чисел, четырех чисел итд.

рис. 4

Разберем по подробнее работу программы блок схемы из рис. 4.

  • У нас подается 3 числа, но их может быть сколько угодно.
  • Их мы записываем в массив array.
  • Выполняем метод sort(); Это мой метод он принимает массив чисел, делает сортировку по убыванию, пузырьковым методом, о нем вы можете прочитать из уроков о массивах.
  • Выполняем метод nod(), который принимает первые два числа. Я создал метод по аналогии как написано выше в этой статье.
  • В следующем блоке я помещаю в тело цикла метод nod(), который присваиваю возвращаемое число из метода nod() переменной a.
  • Выводим результат.
  • Завершаем работу программы.

.

Пока писал статью, написал программу НОК и НОД вычисления, которую можете скачать с сайта. Работа программы очень простая, достаточно в текстовое поле вписать цифры через пробел или запятую, нажать на кнопку вычислить или Enter и программа выведет результат. Программа написана на языке java. Может запускаться со всех систем.


рис 5.

Скачать калькулятор НОК и НОД .

Определение. Наибольшее натуральное число, на которое делятся без остатка числа а и b, называют наибольшим общим делителем (НОД) этих чисел.

Найдём наибольший общий делитель чисел 24 и 35.
Делителями 24 будут числа 1, 2, 3, 4, 6, 8, 12, 24, а делителями 35 будут числа 1, 5, 7, 35.
Видим, что числа 24 и 35 имеют только один общий делитель - число 1. Такие числа называют взаимно простыми .

Определение. Натуральные числа называют взаимно простыми , если их наибольший общий делитель (НОД) равен 1.

Наибольший общий делитель (НОД) можно найти, не выписывая всех делителей данных чисел.

Разложим на множители числа 48 и 36, получим:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
Из множителей, входящих в разложение первого из этих чисел, вычеркнем те, которые не входят в разложение второго числа (т. е. две двойки).
Остаются множители 2 * 2 * 3. Их произведение равно 12. Это число и является наибольшим общим делителем чисел 48 и 36. Так же находят наибольший общий делитель трёх и более чисел.

Чтобы найти наибольший общий делитель

2) из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел;
3) найти произ ведение оставшихся множителей.

Если все данные числа делятся на одно из них, то это число и является наибольшим общим делителем данных чисел.
Например, наибольшим общим делителем чисел 15, 45, 75 и 180 будет число 15, так как на него делятся все остальные числа: 45, 75 и 180.

Наименьшее общее кратное (НОК)

Определение. Наименьшим общим кратным (НОК) натуральных чисел а и b называют наименьшее натуральное число, которое кратно и a и b. Наименьшее общее кратное (НОК) чисел 75 и 60 можно найти и не выписывая подряд кратные этих чисел. Для этого разложим 75 и 60 на простые множители: 75 = 3 * 5 * 5, а 60 = 2 * 2 * 3 * 5.
Выпишем множители, входящие в разложение первого из этих чисел, и добавим к ним недостающие множители 2 и 2 из разложения второго числа (т.е. объединяем множители).
Получаем пять множителей 2 * 2 * 3 * 5 * 5, произведение которых равно 300. Это число является наименьшим общим кратным чисел 75 и 60.

Так же находят наименьшее общее кратное для трёх и более чисел.

Чтобы найти наименьшее общее кратное нескольких натуральных чисел, надо:
1) разложить их на простые множители;
2) выписать множители, входящие в разложение одного из чисел;
3) добавить к ним недостающие множители из разложений остальных чисел;
4) найти произведение получившихся множителей.

Заметим, что если одно из данных чисел делится на все остальные числа, то это число и является наименьшим общим кратным данных чисел.
Например, наименьшим общим кратным чисел 12, 15, 20 и 60 будет число 60, так как оно делится на все данные числа.

Пифагор (VI в. до н. э.) и его ученики изучали вопрос о делимости чисел. Число, равное сумме всех его делителей (без самого числа), они называли совершенным числом. Например, числа 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) совершенные. Следующие совершенные числа - 496, 8128, 33 550 336. Пифагорейцы знали только первые три совершенных числа. Четвёртое - 8128 - стало известно в I в. н. э. Пятое - 33 550 336 - было найдено в XV в. К 1983 г. было известно уже 27 совершенных чисел. Но до сих пор учёные не знают, есть ли нечётные совершенные числа, есть ли самое большое совершенное число.
Интерес древних математиков к простым числам связан с тем, что любое число либо простое, либо может быть представлено в виде произведения простых чисел, т. е. простые числа - это как бы кирпичики, из которых строятся остальные натуральные числа.
Вы, наверное, обратили внимание, что простые числа в ряду натуральных чисел встречаются неравномерно - в одних частях ряда их больше, в других - меньше. Но чем дальше мы продвигаемся по числовому ряду, тем реже встречаются простые числа. Возникает вопрос: существует ли последнее (самое большое) простое число? Древнегреческий математик Евклид (III в. до н. э.) в своей книге «начала», бывшей на протяжении двух тысяч лет основным учебником математики, доказал, что простых чисел бесконечно много, т. е. за каждым простым числом есть ещё большее простое число.
Для отыскания простых чисел другой греческий математик того же времени Эратосфен придумал такой способ. Он записывал все числа от 1 до какого-то числа, а потом вычёркивал единицу, которая не является ни простым, ни составным числом, затем вычёркивал через одно все числа, идущие после 2 (числа, кратные 2, т. е. 4, 6, 8 и т. д.). Первым оставшимся числом после 2 было 3. Далее вычёркивались через два все числа, идущие после 3 (числа, кратные 3, т. е. 6, 9, 12 и т. д.). в конце концов оставались невычеркнутыми только простые числа.

Найдем наибольший общий делитель НОД (36 ; 24)

Этапы решения

Способ №1

36 - составное число
24 - составное число

Разложим число 36

36: 2 = 18
18: 2 = 9 - делится на простое число 2
9: 3 = 3 - делится на простое число 3.

Разложим число 24 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

24: 2 = 12 - делится на простое число 2
12: 2 = 6 - делится на простое число 2
6: 2 = 3
Завершаем деление, так как 3 простое число

2) Выделим синим цветом и выпишем общие множители

36 = 2 ⋅ 2 ⋅ 3 ⋅ 3
24 = 2 ⋅ 2 ⋅ 2 ⋅ 3
Общие множители (36 ; 24) : 2, 2, 3

3) Теперь, чтобы найти НОД нужно перемножить общие множители

Ответ: НОД (36 ; 24) = 2 ∙ 2 ∙ 3 = 12

Способ №2

1) Найдем все возможные делители чисел (36 ; 24). Для этого поочередно разделим число 36 на делители от 1 до 36, число 24 на делители от 1 до 24. Если число делится без остатка, то делитель запишем в список делителей.

Для числа 36
36: 1 = 36; 36: 2 = 18; 36: 3 = 12; 36: 4 = 9; 36: 6 = 6; 36: 9 = 4; 36: 12 = 3; 36: 18 = 2; 36: 36 = 1;

Для числа 24 выпишем все случаи, когда оно делится без остатка:
24: 1 = 24; 24: 2 = 12; 24: 3 = 8; 24: 4 = 6; 24: 6 = 4; 24: 8 = 3; 24: 12 = 2; 24: 24 = 1;

2) Выпишем все общие делители чисел (36 ; 24) и выделим зеленым цветом самы большой, это и будет наибольший общий делитель НОД чисел (36 ; 24)

Общие делители чисел (36 ; 24): 1, 2, 3, 4, 6, 12

Ответ: НОД (36 ; 24) = 12



Найдем наименьшее общее кратное НОК (52 ; 49)

Этапы решения

Способ №1

1) Разложим числа на простые множители. Для этого проверим, является ли каждое из чисел простым (если число простое, то его нельзя разложить на простые множители, и оно само является своим разложением)

52 - составное число
49 - составное число

Разложим число 52 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

52: 2 = 26 - делится на простое число 2
26: 2 = 13 - делится на простое число 2.
Завершаем деление, так как 13 простое число

Разложим число 49 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

49: 7 = 7 - делится на простое число 7.
Завершаем деление, так как 7 простое число

2) Прежде всего запишем множители самого большого числа, а затем меньшего числа. Найдем недостающие множители, выделим синим цветом в разложении меньшего числа множители, которые не вошли в разложение большего числа.

52 = 2 ∙ 2 ∙ 13
49 = 7 ∙ 7

3) Теперь, чтобы найти НОК нужно перемножить множители большего числа с недостающими множителями, которые выделены синим цветом

НОК (52 ; 49) = 2 ∙ 2 ∙ 13 ∙ 7 ∙ 7 = 2548

Способ №2

1) Найдем все возможные кратные чисел (52 ; 49). Для этого поочередно умножим число 52 на числа от 1 до 49, число 49 на числа от 1 до 52.

Выделим все кратные числа 52 зеленым цветом:

52 ∙ 1 = 52 ; 52 ∙ 2 = 104 ; 52 ∙ 3 = 156 ; 52 ∙ 4 = 208 ;
52 ∙ 5 = 260 ; 52 ∙ 6 = 312 ; 52 ∙ 7 = 364 ; 52 ∙ 8 = 416 ;
52 ∙ 9 = 468 ; 52 ∙ 10 = 520 ; 52 ∙ 11 = 572 ; 52 ∙ 12 = 624 ;
52 ∙ 13 = 676 ; 52 ∙ 14 = 728 ; 52 ∙ 15 = 780 ; 52 ∙ 16 = 832 ;
52 ∙ 17 = 884 ; 52 ∙ 18 = 936 ; 52 ∙ 19 = 988 ; 52 ∙ 20 = 1040 ;
52 ∙ 21 = 1092 ; 52 ∙ 22 = 1144 ; 52 ∙ 23 = 1196 ; 52 ∙ 24 = 1248 ;
52 ∙ 25 = 1300 ; 52 ∙ 26 = 1352 ; 52 ∙ 27 = 1404 ; 52 ∙ 28 = 1456 ;
52 ∙ 29 = 1508 ; 52 ∙ 30 = 1560 ; 52 ∙ 31 = 1612 ; 52 ∙ 32 = 1664 ;
52 ∙ 33 = 1716 ; 52 ∙ 34 = 1768 ; 52 ∙ 35 = 1820 ; 52 ∙ 36 = 1872 ;
52 ∙ 37 = 1924 ; 52 ∙ 38 = 1976 ; 52 ∙ 39 = 2028 ; 52 ∙ 40 = 2080 ;
52 ∙ 41 = 2132 ; 52 ∙ 42 = 2184 ; 52 ∙ 43 = 2236 ; 52 ∙ 44 = 2288 ;
52 ∙ 45 = 2340 ; 52 ∙ 46 = 2392 ; 52 ∙ 47 = 2444 ; 52 ∙ 48 = 2496 ;
52 ∙ 49 = 2548 ;

Выделим все кратные числа 49 зеленым цветом:

49 ∙ 1 = 49 ; 49 ∙ 2 = 98 ; 49 ∙ 3 = 147 ; 49 ∙ 4 = 196 ;
49 ∙ 5 = 245 ; 49 ∙ 6 = 294 ; 49 ∙ 7 = 343 ; 49 ∙ 8 = 392 ;
49 ∙ 9 = 441 ; 49 ∙ 10 = 490 ; 49 ∙ 11 = 539 ; 49 ∙ 12 = 588 ;
49 ∙ 13 = 637 ; 49 ∙ 14 = 686 ; 49 ∙ 15 = 735 ; 49 ∙ 16 = 784 ;
49 ∙ 17 = 833 ; 49 ∙ 18 = 882 ; 49 ∙ 19 = 931 ; 49 ∙ 20 = 980 ;
49 ∙ 21 = 1029 ; 49 ∙ 22 = 1078 ; 49 ∙ 23 = 1127 ; 49 ∙ 24 = 1176 ;
49 ∙ 25 = 1225 ; 49 ∙ 26 = 1274 ; 49 ∙ 27 = 1323 ; 49 ∙ 28 = 1372 ;
49 ∙ 29 = 1421 ; 49 ∙ 30 = 1470 ; 49 ∙ 31 = 1519 ; 49 ∙ 32 = 1568 ;
49 ∙ 33 = 1617 ; 49 ∙ 34 = 1666 ; 49 ∙ 35 = 1715 ; 49 ∙ 36 = 1764 ;
49 ∙ 37 = 1813 ; 49 ∙ 38 = 1862 ; 49 ∙ 39 = 1911 ; 49 ∙ 40 = 1960 ;
49 ∙ 41 = 2009 ; 49 ∙ 42 = 2058 ; 49 ∙ 43 = 2107 ; 49 ∙ 44 = 2156 ;
49 ∙ 45 = 2205 ; 49 ∙ 46 = 2254 ; 49 ∙ 47 = 2303 ; 49 ∙ 48 = 2352 ;
49 ∙ 49 = 2401 ; 49 ∙ 50 = 2450 ; 49 ∙ 51 = 2499 ; 49 ∙ 52 = 2548 ;

2) Выпишем все общие кратные чисел (52 ; 49) и выделим зеленым цветом самое маленькое, это и будет наименьшим общим кратным чисел (52 ; 49).

Общие кратные чисел (52 ; 49): 2548

Ответ: НОК (52 ; 49) = 2548

Делитель - это целое число, на которое другое целое число делится без остатка. Для нескольких чисел можно найти общие делители, среди которых будет наибольший. Именно наибольший общий делитель обладает рядом полезных свойств.

Наибольший общий делитель

Делитель целого числа A – это целое число B, на которое A делится без остатка. К примеру, делители числа 24 - 1, 2, 3, 4, 6, 8, 12, 24. Каждое число делится на себя и на единицу, поэтому эти делители мы можем не учитывать. Числа, которые делятся только на себя и единицу, считаются простыми и обладают рядом уникальных свойств. Однако к большинству чисел мы можем подобрать делители, некоторые из которых будут общими. К примеру, для числа 36 такими делителями будут 2, 3, 4, 6, 9, 12, 18. Большинство из них совпадает с делителями числа 24, приведенными выше, но наибольшим из них является 12. Это и есть НОД пары 24 и 36. Понятие наименьшего общего делителя не имеет смысла, так как это всегда единица.

Нахождение НОД

Для вычисления НОД используется три способа. Первый, самый простой для понимания, но при этом наиболее трудоемкий - это простой перебор всех делителей пары и выбор из них наибольшего. Например, для 12 и 16 НОД находится следующим образом:

  • выписываем делители для 12 - 2, 3, 4 и 6;
  • выписываем делители для 16 - 2, 4 и 8;
  • определяем общие делители чисел - 2, 4;
  • выбираем наибольший из них - 4.

Второй способ сложнее для понимания, но более эффективен в плане вычислений. В этом случае НОД находится путем разложения чисел на простые множители. Для разложения на простые множители необходимо последовательно делить число без остатка на числа из ряда простых 2, 3, 5, 7, 11, 13…

Для тех же чисел НОД вычисляется по такой схеме:

  • раскладываем 12 на простые множители и получаем 2 × 2 × 3;
  • раскладываем 16 - 2 × 2 × 2× 2;
  • отсеиваем несовпадающие множители и получаем 2 × 2;
  • перемножаем множители и определяем НОД = 4.

Третий способ лучше всего подходит для определения НОД пар любых, сколь угодно больших чисел. Алгоритм Евклида - это метод поиска наибольшего общего делителя для пары целых чисел A и B, при условии A>B.

Согласно алгоритму мы должны разделить A на B, в результате которого получится:

где A1 – целое число, C – остаток от деления.

После этого разделим B на остаток C и обозначим результат как B1. Теперь у нас есть новая пара чисел A1 и B1.

Повторим действия. Разделим A1 на B1, получим в результате A2 и C1. После этого разделим B1 на C1 и получим B2. Алгоритм повторяется до тех пор, пока остаток Cn не будет равен нулю.

Рассмотрим его подробно на числах 1729 и 1001. Порядок действий следующий. У нас есть пара (1001, 1729). Для использования алгоритма Евклида первое число в паре должно быть больше. Выполним преобразование для корректной работы алгоритма - меньшее число оставим на месте, а большее заменим на их разницу, так как если оба числа делятся на НОД, то их разность также делится. Получим (1001, 728). Выполним расчеты:

  • (1001, 728) = (728, 273) = (273, 182) - вместо того, чтобы много раз искать разность, можно написать остаток от деления 728 на 273.
  • (273, 182) = (91, 182) = (91, 0) = 91.

Таким образом, НОД пары 1001 и 1729 равен 91.

Использование НОД

На практике наибольший общий делитель применяется при решении диофантовых уравнений вида ax + by = d. Если НОД (a, b) не делит d без остатка, то уравнение не разрешимо в целых числах. Таким образом, диофантово уравнение имеет целые корни только в случае, если отношение d / НОД (a, b) есть целое число.

Наш онлайн-калькулятор позволяет быстро отыскать наибольший общий делитель как для пары, так и для любого произвольного количества чисел.

Примеры из реальной жизни

Школьная задача

В задаче по арифметике требуется найти НОД четырех чисел: 21, 49, 56, 343. Для решения при помощи калькулятора нам потребуется только указать количество чисел и ввести их в соответствующие ячейки. После этого мы получим ответ, что НОД (21, 49, 56, 343) = 7.

Диофантово уравнение

Пусть у нас есть диофантово уравнение вида 1001 х + 1729 у = 104650. Нам необходимо проверить его на разрешимость в целых чисел. Мы уже считали НОД для этой пары при помощи алгоритма Евклида. Давайте проверим правильность выкладок и пересчитаем НОД на калькуляторе. Действительно, НОД (1001, 1729) = 91. Проверяем возможность целочисленного решения по условию d / НОД (a, b) = 104650/91 = 1150. Следовательно, данное уравнение имеет целые корни.

Заключение

Наибольший общий делитель мы проходим еще в школе, но не всегда понимаем, для чего он нужен в будущем. Однако НОД - важный термин в теории чисел и применяется во многих областях математики. Используйте наш калькулятор для поиска НОД любого количества чисел.

Алгоритм Евклида – это алгоритм нахождения наибольшего общего делителя (НОД) пары целых чисел.

Наибольший общий делитель (НОД) – это число, которое делит без остатка два числа и делится само без остатка на любой другой делитель данных двух чисел. Проще говоря, это самое большое число, на которое можно без остатка разделить два числа, для которых ищется НОД.

Алгоритм нахождения НОД делением

  1. Большее число делим на меньшее.
  2. Если делится без остатка, то меньшее число и есть НОД (следует выйти из цикла).
  3. Если есть остаток, то большее число заменяем на остаток от деления.
  4. Переходим к пункту 1.

Пример:
Найти НОД для 30 и 18.
30 / 18 = 1 (остаток 12)
18 / 12 = 1 (остаток 6)
12 / 6 = 2 (остаток 0)
Конец: НОД – это делитель 6.
НОД (30, 18) = 6

a = 50 b = 130 while a != 0 and b != 0 : if a > b: a = a % b else : b = b % a print (a + b)

В цикле в переменную a или b записывается остаток от деления. Цикл завершается, когда хотя бы одна из переменных равна нулю. Это значит, что другая содержит НОД. Однако какая именно, мы не знаем. Поэтому для НОД находим сумму этих переменных. Поскольку в одной из переменных ноль, он не оказывает влияние на результат.

Алгоритм нахождения НОД вычитанием

  1. Из большего числа вычитаем меньшее.
  2. Если получается 0, то значит, что числа равны друг другу и являются НОД (следует выйти из цикла).
  3. Если результат вычитания не равен 0, то большее число заменяем на результат вычитания.
  4. Переходим к пункту 1.

Пример:
Найти НОД для 30 и 18.
30 - 18 = 12
18 - 12 = 6
12 - 6 = 6
6 - 6 = 0
Конец: НОД – это уменьшаемое или вычитаемое.
НОД (30, 18) = 6

a = 50 b = 130 while a != b: if a > b: a = a - b else : b = b - a print (a)

© 2024 newcity55.ru - Строительный портал - Новый город