Какая подложка у гибких солнечных панелей. Тонкопленочная технология отвоевывает позиции на рынке солнечной энергетики. Конструктивные особенности панели

Какая подложка у гибких солнечных панелей. Тонкопленочная технология отвоевывает позиции на рынке солнечной энергетики. Конструктивные особенности панели

12.08.2023

Экология потребления.Наука и техника:Гибкие солнечные батареи стали настоящей находкой для любителей путешествий и просто для тех, кому нравится быть независимым от традиционных розеток.

Гибкие солнечные батареи стали настоящей находкой для любителей путешествий и просто для тех, кому нравится быть независимым от традиционных розеток. Конечно, такими элементами дом не осветишь, не отопишь и много энергии получить вообще не удастся. Но надо ли за этим стремиться? Ведь предназначение таких батарей – комфорт для туриста, то есть человека, не имеющего временно постоянного жилья. Следовательно, зарядка ноутбука, мобильного телефона или планшета – это задача портативных солнечных элементов.

Из-за своей гибкости, солнечные панели можно легко уложить на крыше

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ

  • Вес. Этот показатель, бесспорно, является самым основным преимуществом для гибких элементов. Можно сравнивать разные модели, но в основном разница будет видна примерно в 30%, а этого уже достаточно, чтобы говорить о комфорте. К примеру, туристы знают об этом не понаслышке, каждая вещь в рюкзаке или на нем должна иметь максимально меньший вес. В походе каждые 100 грамм стают заметны и чтобы понять это, достаточно пройтись неровной местностью десяток километров. Вопрос соотношения веса к мощности гибкие солнечные батареи решают банально – чем больше вес, тем выше мощность. Например, модель мощностью 3 Вт имеет вес 149 грамм, а модель на 6 Вт – 284 грамма. Заметим ради справедливости, что твердая солнечная батарея на 6 Вт весит 390 грамм.
  • Размер. Здесь гибкие батареи проигрывают своим твердым собратьям. Если брать одинаковую мощность в 6 Вт, то размер гибкого элемента будет около 1,5 квадратных метра, тогда как твердый вариант будет иметь площадь 0,9 квадратных метра. Конечно, неоспоримым преимуществом гибких батарей является их возможность складываться, но это не всегда является таким уж высоким показателем. Особенно, когда речь идет о пешем туризме, где все приходится носить на себе.
  • Эффективность. Точные цифры сложно выяснить. Во-первых, производители часто завышают мощность своего товара, а во-вторых, даже элементы одного производителя и одной партии могут значительно отличаться по мощности.


В среднем можно говорить о таких показателях: КПД твердых батарей составляет примерно 18-20%, тогда как гибкие батареи имеют КПД около 12-15%. Но если составлять пересчет на единицу веса, то гибкие батареи примерно в два раза будут стоять выше.

  • Надежность. Технология производства позволяет особо не переживать за этот показатель. Обычно гибкие элементы вшиты в чехол, который невосприимчив в относительно высоким нагрузкам. Водостойкость гибких батарей тоже высока. Попав под дождь, батареи не покажут проблем в работе после его окончания. Ударостойкость гибких батарей довольно высока, что объясняется легким весом и пружинистостью во время соприкосновения с поверхностью при падении. Если верить отзывам туристов, то даже после падения на камни с высоты около 10 метров, гибкие батареи продолжали работать. Конечно, такие случаи могут носить индивидуальный характер. Достаточно провести аналогию с человеком, когда одному достаточно упасть в комнате и сломать три ребра и ключицу, а кто-то падает со второго этажа и неспешно продолжает идти куда-то. Царапины на поверхности при падении элементов могут оставаться. На общую работу такие царапины не способны повлиять, но при наличии большого их количества мощность может несколько снизиться.
  • Стоимость. Гибкие батареи имеют стоимость выше своих твердых собратьев по причине своей большей компактности. Немного переплатить придется за преимущества гибких батарей и в отдельных случаях за брендовое имя.

НА ЧТО ОБРАЩАТЬ ВНИМАНИЕ ПРИ ПОКУПКЕ И ВО ВРЕМЯ ЭКСПЛУАТАЦИИ


  • При покупке обращать нужно внимание на силу тока. Поскольку чаще всего понадобится заряжать мобильные устройства, то силы тока в 0,5А будет достаточно. Правда, если солнечного света будет много.
  • Крепление панели солнечной гибкой батареи может быть разным. Некоторые панели крепятся присосками, что делает их монтаж к гладим поверхностям очень удобным. Например, на крыше автомобиля или стекла витрины. Все без исключения модели снабжаются небольшими отверстиями в чехлах, чтобы было удобным крепить к рюкзаку.
  • При использовании следует не забывать, что самым оптимальным положением гибкого элемента будет перпендикулярный наклон к солнечным лучам. Также нужно не использовать батарею через стекло – теряется до 35% мощности.
  • КПД для элементов такого типа – аргумент, на котором часто спекулируют недобросовестные продавцы и производители. Последняя швейцарская новинка имеет КПД 17,7%. Так что, если придется услышать уверения продавца о КПД 25%, а то и все 50%, можно смело разворачиваться – вам хотят продать то, что еще не придумано в мире.
  • На сегодняшний день появилось много контор и фирм, которые производят гибкие элементы на заказ. В таких учреждениях можно выбрать подходящую мощность и размер, а также, соответственно, вес батареи.

Гибкие батареи, которые работают от солнечного света, действительно являются очень любопытной и перспективной новинкой. Скорее всего, такие элементы очень скоро заполнят рынок, так как наблюдается общее снижение цен на этот товар. Большие и малые, широкие и узкие, на большую или меньшую мощность – они все потребуют денег при покупке. Дальше они работают совершенно бесплатно и по несколько десятилетий. опубликовано

Люди давно задумываются об экологически чистых и дешевых энергетических ресурсах. Поэтому альтернативой энергетики, основанной на применении углеводородов, становятся ветряки и солнечные батареи. Тяжеловесные конструкции со временем трансформировались в изящные панели. Их используют в быту, автомобилестроении, освоении космоса.

Устройство и работа модулей

Гибкая солнечная панель устроена следующим образом: тонкая подложка покрыта кремниевым полупроводником. Толщина панели с напылением составляет не более 1 мкм. Полупроводник нагревается солнцем, в результате чего электроны перемещаются в заданном направлении. К элементам монтируют выводы и формируют батарею. Для работы такой мобильной электростанции используют солнечную энергию.

Крупногабаритные, с маленьким КПД, солнечные батареи ушли в прошлое. Современным моделям не требуется максимальное количество солнечного света, а сами конструкции стали легкими, гибкими, мобильными, их можно свернуть в трубку и взять с собой в поход.

В настоящее время аморфный кремний заменяют сульфиды и теллуриды кадмия, медно-галлиевые и индиевые диселениды, полимерные соединения.

Для повышения КПД современные технологии позволяют выпускать многослойные полупроводниковые конструкции. Каскадное строение панели дает возможность преобразовывать отраженный свет несколько раз, что доводит их работоспособность почти до кристаллических вариантов.

Несмотря на то что устройство выглядит довольно просто, для подачи тока в сеть необходимы дополнительные составляющие:

  • Аккумулятор, накапливающей энергию. Он нужен при перепадах напряжения.
  • Инвертор, переводящий постоянный ток в переменный.
  • Система для корректировки заряда аккумулятора.

Отличительные характеристики

Гибкие гелиомодули имеют свои особенности:

  • Тонкая податливая структура батарей дает возможность использовать их на нестандартных типах поверхности.
  • Имеют высокий уровень оптического поглощения фотонов, это увеличивают их КПД.
  • Гибкие батареи способны работать даже в облачную погоду, что говорит о высокой производительной выработке.
  • Наиболее актуален такой вид энергии в жарком климате, там, где гелиомодули получают максимальное количество солнечных лучей.
  • Особо высокую продуктивность солнечные панели показывают на крупных гелиокомплексах.

Преимущества и недостатки

Гибкая солнечная панель, благодаря своей мобильности, имеет преимущества над другими видами батарей.

К ее достоинствам относится:

  • Надежность изделия обеспечена мерами, предохраняющими от механического разрушения, воздействия влаги. Легкий вес и большая площадь позволяет панели оставаться невредимой при падении с многометровой высоты. Большинство конструкций оснащены чехлами.
  • Ультратонкая панель имеет небольшую массу, 6-ваттная батарея весит менее 300 грамм, тогда как кристаллическая таких же параметров – на 100 г больше.
  • Эффективность работы пленочных моделей составляет 15%, кристаллических – 20%. Но в пересчете КПД на массу тела, солнечная панель имеет преимущества.

К недостаткам можно отнести цену, которая превышает стоимость жесткой батареи. Пока еще не слишком большой спрос удерживает ценовую политику. Постепенно ситуация в этом отношении будет улучшаться.

Применение

Устройства, преобразующие свет в электрический ток, давно нашли свое применение. Гибкие солнечные панели облегчают жизнь людей во многих сферах деятельности, от бытового уровня до космических разработок.

При архитектурной отделке домов гибкие панели монтируют на крышах и в окнах зданий. Стекло «триплекс» с функционалом солнечной генерации собирает энергию света, не нарушая прозрачность окон и создает приятный микроклимат в помещении. В комнатах, где установлены окна с триплексом, можно обходиться без кондиционера.

Подобные стекла устанавливают в учебных заведениях, торговых павильонах, на остановках общественного транспорта, его используют для уличных бассейнов и в теплицах.

Небольшой вес панелей делает их востребованными в самолетостроении, ими оснащают электрические автомобили, лодки, аэростаты. Нашли свое применение гибкие конструкции в военном деле, судостроении, кинематографе, их применяют работники полиции и МЧС.

Панели монтируются на любой поверхности, поэтому их с успехом используют в быту.

Пленочную батарею можно встретить на часах, калькуляторах, в качестве нашивок на одежде, на чехлах. Некоторые модули созданы для ношения на сумках и рюкзаках. Power bank с солнечными фотоэлементами позволяет в экспедициях и походах заряжать телефоны, планшеты, фонарики, фотоаппараты.

Фотопанели на основе аморфного кремния нашли свое применение на космических станциях, с учетом малого веса, их легко доставить на околоземную орбиту, а энергоемкость подобных конструкций в пять раз превышает кристаллические варианты. Удобно использовать солнечные панели на объемных гелиостанциях, где достаточно места для их размещения.

Выбор

Одним из важных критериев выбора являются климатические условия местности, в которой будут установлены гелиопанели. Учитывается количество солнечных дней в году и длина самого дня. Исходя из этих данных, определяется мощность электроэнергии, которую должна вырабатывать батарея в час или сутки. Для северных районов подойдет текстурированное стекло, оно эффективно справляется с работой даже в пасмурные дни. Модули из микроморфного кремния не требуют точной ориентации на солнце, их суммарная годовая мощность превосходит другие тонкопленочные батареи. На них часто останавливают свой выбор жители районов с малой освещенностью.

Выбирая модуль для дома, необходимо продумать, какие электроприборы будут востребованы, хватит ли для них мощности предполагаемой покупки.

Нужно заранее определиться с местом для солнечных панелей и предусмотреть резервную территорию, если понадобится нарастить мощность.

При покупке учитывается тип конструкции, материал, толщина фотоэлемента, производитель модуля – все это влияет на цену, качество и длительность работы. Не обязательно переплачивать за иностранные бренды, хорошо себя зарекомендовали модули российского производства, ориентированные на наши климатические условия.

Для расчета количества модулей, следует учитывать, что семья из 4 человек, в среднем, потребляет 200–300 кВт электроэнергии в месяц. Солнечные панели вырабатывают с одного квадратного метра примерно от 25 Вт до 100 Вт в сутки. Для полного удовлетворения дома в потребностях электричества, понадобится 30–40 секций. Оснащение солнечными батареями обойдется семье около 10 тысяч долларов. Устанавливать панели следует на южную сторону крыши, куда попадает максимальное количество солнечных лучей.

Чтобы определиться с выбором, следует понять, какой тип модуля больше подходит покупателю:

  • Монокристаллические фотоэлементы стоят 1,5 доллара за Вт. Они имеют меньшие размеры и более эффективны, чем другие виды подобных батарей. Их общее покрытие занимает меньше места. Учитывая мощность и качество, лучше сделать выбор в их пользу. Единственным минусом является высокая стоимость.
  • Поликристаллические батареи стоят 1,3 доллар за Вт. По мощности они уступают монокристаллическим, но и оцениваются дешевле. Бюджетные возможности привлекают покупателей, к тому же последние разработки подобных батарей сильно приблизили их КПД к монокристаллическим аналогам.

  • Солнечные тонкопленочные панели имеют меньше мощности на один квадратный метр, чем предыдущие модели. Ситуацию выравнивает появление на рынке модулей из микроморфного кремния. Они вырабатывают хорошую суммарную мощность за годовой отрезок времени, отлично себя зарекомендовали в работе видимого и инфракрасного спектра. Для них не важна привязанность к солнечным лучам. Срок эксплуатации батарей составляет 25 лет. Модули имеют недорогую технологию производства, это сказалось на их стоимости – 1,2 доллара за Вт.
  • Большой интерес представляет собой гибридная панель, так как она генерирует тепловую и электрическую энергию. Конструкция соединяет в себе коллектор тепла и элементы фотоэлектрической батареи.

Солнечные батареи хоть и экологически чистые, но при этом - весьма дорогие. Ученые нашли им альтернативу - полимерные солнечные батареи . О том, что это такое, рассказано в статье.

Человек, хотя бы немного интересующийся солнечной энергетикой, прекрасно представляет себе, что такое солнечная батарея - это совокупность большого количества фотоэлементов, укрепленных на какой-либо поверхности.

Фотоэлемент представляет собой полупроводниковое устройство, которое преобразует энергию Солнца в электрический ток. Фотоэлементы «традиционных» солнечных батарей производят из кремния. Процесс производства таких батарей сложен и весьма дорог. Несмотря на то, кремний - это очень распространенный элемент и что в земной коре содержится около 20% кремния, процесс превращения исходного песка в высокочистый кремний очень сложен и дорог.

Кроме того, порой возникают проблемы с утилизацией отработанных фотоэлементов, поскольку в этих фотоэлементах помимо кремния содержится еще и кадмий. И наконец, кремниевые фотоэлементы по мере работы сильно нагреваются. После чего их производительность начинает снижаться. Поэтому кремниевым батареям помимо фотоэлементов требуются еще и дорогостоящие системы охлаждения. Подобнее об этом смотрите здесь: . Все это заставило ученых искать более эффективные .

Полимерный фотоэлемент - это пленка, которая состоит из активного слоя (полимера), электродов из алюминия, гибкой органической подложки и защитного слоя. Для создания рулонных полимерных солнечных батарей отдельные пленочные фотоэлементы объединяют между собой.

Достоинства полимерных солнечных батарей по сравнению с обычными кристаллическими : компактность, легкость, гибкость. Такие батареи недороги в производстве (для их изготовления не используется дорогой кремний) и экологичны, так как они оказывают на окружающую среду менее значительное влияние.

Недостаток пока один - эффективность преобразования солнечной энергии полимерных солнечных батарей пока очень низкий. Этот недостаток и ограничивал создание таких батарей на уровне образцов-прототипов.

В настоящее время, наибольший коэффициент полезного действия полимерных солнечных батарей удалось добиться Алану Хигеру из центра полимеров и органических твёрдых частиц университета Калифорнии в Санта-Барбаре (семь лет назад он получил Нобелевскую премию по химии за открытие и развитие проводящих полимеров) и Кванхе Ли из корейского института науки и технологии в Гванджу.

Их солнечная батарея имеет КПД в 6,5% при освещённости в 0,2 ватта на квадратный сантиметр. Это самый высокий уровень, достигнутых для солнечных батарей из органических материалов. И хотя лучшие кремниевые солнечные батареи имеют КПД 40%, тем не менее к полимерным батареям во всем мире проявляют очень сильный интерес. Правда технология производства таких батарей находится пока еще в ранней стадии своего развития.

Совсем недавно датская компания «Mekoprint A/S» запустила первую линию, на которой будут производится полимерные солнечные батареи. Компания около 10 лет занималась проектно-конструкторскими работами и вот теперь готова к массовому выпуску таких батарей.

Производство заключается в многослойной печати солнечного фотоэлемента на гибкую пленку, которую затем можно скручивать, разрезать и делать из пленки солнечные батареи абсолютно любых размеров.

По заявлениям специалистов компании, основной плюс полимерных батарей - это их дешевизна. Их производство обойдется компании как минимум в 2 раза дешевле, чем производство обычных, кремниевых батарей. Это обстоятельство, в свою очередь, скажется на рыночной стоимости полимерных батарей и в результате они станут намного доступнее.

Вторым плюсом полимерных батарей является их потрясающая гибкость. Такую батарею - можно резать ножом, можно сворачивать в трубку, можно наклеить на любую поверхность совершенно произвольной формы.

При желании такую батарею можно наклеить даже на одежду (что и было однажды проделано датскими специалистами). Полимерная батарея была наклеена на обычную шапку. И в солнечную погоду мощности батареи вполне хватало на то, чтобы от нее работал небольшой переносной радиоприемник.

И наконец, нельзя не упомянуть и о чистоте процесса производства таких батарей. Оказывается. их производство не вреднее, чем производство обычной пластиковой посуды и о вредных выбросах в атмосферу, происходящих при производстве обычных батарей из кремния скоро можно забыть.

Вполне возможно, что через какое-то время мы забудем о газе и угле, так как при дальнейшем развитии этой технологии вполне возможно что вырабатываемая электроэнергия с использованием солнечных полимерных батарей окажется дешевле процесса получения электроэнергии путем сжигания традиционных энергоносителей.

Солнечные электростанции пока не используются повсеместно, на то есть ряд причин, описанных в (откроется в новом окне). Тонкопленочные солнечные батареи в ряду новейших технологий пока не стали модными и не используются повсеместно, т.к. имеют больше недостатков, чем достоинств, но рассмотрим обе стороны.

В чем разница

Принципиальная разница состоит в используемых материалах. Для достижения отличительных параметров тонкопленочных солнечных батарей нужно использовать полупроводники из селенида меди-индия , а также теллурида кадмия . Принцип действия точно такой же, как в поликристаллических и монокристаллических фотоэлементах с той разницей, что наносить указанные полупроводники можно на пленку. Пленка гнется и скручивается в отличие от классических солнечных панелей.

Достоинства

  1. Полупрозрачность. Классические (поликристаллические и монокристаллические) солнечные панели полностью непрозрачные. Аморфные тонкопленочные батареи могут быть выполнены таким образом, чтобы заменить окно в доме, пропуская часть света, а часть преобразовывая в электричество.
  2. Легкость. Батареи выполненные на пленке легче классических в несколько раз, что дает больше свободы в монтаже, упрощает операции с ними.
  3. Гибкость. Тонкопленочные батареи теоретически можно изгибать в любой плоскости без потери работоспособности.
  4. Ударопрочность. Пленка не разбивается от падения при монтаже, от града и остается работоспособной в самых экстремальных условиях.

Недостатки

Мифы и реальность

Пока технология изготовления пленочных солнечных батарей не составляет реальной конкуренции поли/монокристаллическим аналогам. Прежде всего из-за дороговизны используемых материалов. Тем не менее, на ТВ, в сети и среди розничных продавцов бытует несколько мифов о чудо свойствах этой технологии.

Область применения

Как показывает практика, использовать гибкие солнечные панели целесообразно только в походных условиях. Гораздо проще развернуть холст с пленочными солнечными панелями на крыше палатки или трейлера, чем возить с собой жесткую конструкцию, на сборку которой нужно время. Популярны также переносные электростанции для зарядки телефонов и фонарей во время путешествия.

Ввиду низкого КПД сфера применения солнечных батарей очень ограничена. Применение в качестве стационарной солнечной электростанции возможно, но только при наличии больших свободных площадей.

Видео о пленочных батареях

Типичный рекламный сюжет, где диктор рассказывает чудеса о пленочных солнечных батареях, предполагая КПД в 10%, забывая, что таких результатов пока смогли добиться только в лабораторных условиях, но никак не в промышленных образцах. Ролик будет интересен тем, кто хочет знать, как реклама пытается обмануть нас.

Комментарии:

Похожие записи

Power Bank с солнечной батареей - расчет на безграмотность Подбираем аккумулятор для солнечной электростанции

В настоящее время порядка 80-85% производства солнечных батарей приходится на кристаллические модули. Но по заверениям специалистов этой области, будущее все-таки за тонкопленочной технологией. Ее главное достоинство, способное обеспечить ей лидирующие позиции, это более низкая себестоимость. Модули, производимые с использованием тонкопленочной технологии, получили название гибкие солнечные батареи, благодаря тому, что их эластичность и малый вес позволяют монтировать солнечные модули на любой поверхности и даже вшивать их в одежду.

Для производства гибких модулей используют пленки из полимерных материалов, аморфного кремния, алюминия, теллурида кадмия и других полупроводников. Чаще всего их применяют в качестве переносных зарядных устройств, так называемых складных солнечных батарей, для ноутбуков, видеокамер, мобильных телефонов и другой электроники, не требующей большой мощности. Для выработки значительного количества энергии потребуется и большая площадь модулей.

Подробнее о тонкопленочной технологии

Первые тонкопленочные солнечные батареи изготавливались с использованием аморфного кремния, который наносили тонким слоем на поверхность подложки. Их КПД составлял всего 4-5%, да и срок службы оставлял желать лучшего. Второе поколение аморфных модулей уже имело КПД на 2-3% больше, а срок эксплуатации практически сравнялся со сроком службы кристаллических модулей. А вот КПД третьего поколения модулей увеличилось уже до 12%. Так что прогресс на лицо.

При производстве складных солнечных батарей и гибких модулей больших размеров, чаще всего применяют теллурид кадмия и селенид меди-индия. Использование этих полупроводников дает увеличение коэффициента полезного действия от 5 до 10%. А учитывая, что ученые-физики борются за каждый дополнительный процент, такая разница очень ощутима. Более подробно о производстве солнечных батарей по тонкопленочной технологии .

Особенности тонкопленочных батарей:

  • Хорошо работают даже при рассеянном свете, поэтому суммарная годовая выработка мощности на 10-15% больше, чем у кристаллических модулей.
  • Более низкая стоимость производства, следовательно, данный вид солнечных батарей обойдется Вам дешевле.
  • Большую эффективность показывают в системах с мощностью более 10кВт.
  • При равном показателе вырабатываемой мощности, площадь тонкопленочных модулей примерно в 2,5 раза больше, чем у кристаллических.
  • Требуют использование высоковольтных контроллеров и инверторов.

Случаи, когда применение тонкопленочных модулей обосновано:

  • В регионах, где преобладает пасмурная погода. Модули, выполненные по тонкопленочной технологии, лучше поглощают рассеянный свет.
  • В странах с жарким климатом. При высокой температуре тонкопленочные солнечные батареи показывают большую эффективность.
  • Есть необходимость монтирования панелей в здание либо требуется их использование в качестве дизайнерских задумок или конструкторских решений, например, для отделки фасада.
  • Потребность в модулях с частичной прозрачностью до 20%.

От плоской формы к цилиндрической

Цилиндрические солнечные батареи впервые разработала небольшая американская компания с запоминающимся названием Solyndra (от слов «солнечный» и «цилиндр»). Свое достижение они представили в 2008 году и сразу же получили несколько крупных заказов от европейских и американских фирм. По их заверениям, эта цифра составляла более 1 млрд. $.

До 2008 года солнечные элементы имели плоскую форму. Solyndra же предложила устанавливать в солнечные батареи элементы-цилиндры. Тонкий слой фотоэлемента наносится на поверхность стеклянной трубки, после чего она помещается в еще одну такую же трубку, но уже с электрическими контактами. В качестве полупроводников для элементов используют уже знакомые нам медь, галлий, селен и индий. Цилиндрические солнечные батареи за счет своей формы поглощают большее количество света, и, как следствие, имеют больший показатель производительности. Каждая панель состоит из 40 цилиндров и имеет размеры 1 на 2 метра.

Для увеличения поглощаемого света рекомендуют использовать цилиндрические батареи в сочетании с белым покрытием крыши. В таком случае, отраженные от крыши лучи будут проходить через цилиндры, чем и обеспечат еще плюс 20% поглощенной энергии. Еще одно важное достоинство батарей с элементами цилиндрической формы – это их устойчивость к сильному ветру. Они способны выдерживать порывы ветра скоростью до 200 км/ч. Это делает монтаж солнечных батарей более простым и дешевым.

Многопереходные солнечные элементы

В большинстве производимых в настоящее время солнечных элементах реализован один p-n-переход. То есть свободные электроны в таком элементе создают только те фотоны, которые обладают энергией больше или равной ширине запрещенной зоны. Чтобы преодолеть это ограничение учеными был разработан новый вид солнечных элементов, получивших название каскадные элементы. Они имеют многослойную структуру, состоящую из солнечных элементов, ширина запрещенной зоны которых различна.

Самые перспективные гибкие солнечные батареи, изготовленные с использованием каскадных элементов, имеют 3 p-n-перехода. Верхний слой формируют из сплава на основе a-Si:H, для второго используют сплав a-SiGe:H, содержащий 10-15% германия, для третьего слоя процентное содержание германия в сплаве увеличивают до 40-50%. С каждым последующим слоем ширина запрещенной зоны уменьшается, поэтому каждый следующий слой поглощает те фотоны, которые прошли через предыдущий. В таблице ниже представлены значения КПД каскадных СЭ. Стоит отметить, что столь высокие показатели КПД позволяют уменьшить стоимость получаемой солнечной энергии почти в 2 раза в сравнении с солнечными батареями на основе кристаллического кремния.

Теоретическое значение КПД Ожидаемое значение КПД Реализованное значение КПД
1 p-n-переход 30 27 25,1
2 p-n-перехода 36 33 30,3
3 p-n-перехода 42 38 31,0
4 p-n-перехода 47 42
5 p-n-переходов 49 44

Самые интересные достижения в мире тонкопленочных модулей

2 года назад специалисты лаборатории МГУ разработали рулонные органические солнечные батареи на основе полимера в качестве активного слоя и гибкой органической подложки. Их КПД составлял всего 4%, зато они могли эффективно работать при температуре 80°С в течение 10 тысяч часов. На этом их деятельность не закончилась, исследования ведутся постоянно, основным направлением выбраны солнечные элементы на основе полимерных материалов.

Специалисты федеральной лаборатории технологий и материаловедения в Швейцарии создали солнечный элемент на полимерной подложке с КПД 20,4%. В качестве полупроводника использовались 4 элемента: селен, индий, галлий и медь. На сегодняшний день это рекордный показатель для СЭ, выполненных на основе перечисленных элементов. Предыдущий рекорд составлял 18,7%.

Для тонкопленочных фотоэлементов на основе индия, селена и меди, максимальное значение КПД на сегодня оставляет 19,7%. Такого показателя смогла добиться японская компания Solar Frontier. Поглощающие пленки на фотоэлементы наносили методом напыления, используя термическую обработку в парах селена.

Компания ICP Solar Technologies представила оригинальную складную солнечную батарею. Ее достаточно раскатать в солнечном месте и можно подключать устройство, которое необходимо зарядить. Мощность батареи 5 Вт при напряжении питания 12 В. Согласитесь, незаменимый вариант для всех туристов, хотя и не единственный. Разработкой подобных переносных СБ занимаются различные фирмы. Так не меньшей популярностью пользуется складная солнечная батарея Foldable Solar Chargers, максимальная мощность которой составляет 190 Вт.

Ну и самой интересной разработкой можно назвать «тканевые» солнечные панели. Японские ученые решили соединить крошечные цилиндрические солнечные элементы размером всего 1,2 мм и тканевое полотно. Такое необычное решение позволит создавать высокотехнологичные материалы для одежды и переносные тенты. Промышленное производство «солнечной» ткани намечено на март 2015 года.

Займет ли тонкопленочная технология первое место при производстве солнечных элементов, покажет будущее. Но судя по активным исследованиям, ведущимся в данной области, и по неплохим результатам, вполне возможно, что в ближайшем будущем ученые все-таки смогут создать не просто эффективные солнечные батареи, но еще и доступные при этом широким слоям населения.

Статью подготовила Абдуллина Регина

В этом ролике рассказано о солнечных модулях на базе тонкопленочной технологии, которые позволяют преобразовать в электроэнергию до 10% солнечного излучения и при этом в полтора раза повысить эффективность фотоэлементов, а расход кремния при производстве сократить в 200 раз!

© 2024 newcity55.ru - Строительный портал - Новый город